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2 Matrices

1.0 INTRODUCTION
We have studied about matrices and their properties in the previous classes. Now, we are going to learn
about matrices holding some special properties. In this chapter, we learn about symmetric, skew-
symmetric, Hermitian, Skew-Hermitian matrices.
We shall also study rank of a matrix, row rank and column rank of a matrix. We shall show that for
every matrix its rank, row rank and column rank are all equal.

1.1 OBJECTIVES

After going through this unit you will be able to:
e Differentiate between Symmetric and Skew- Symmetric matrices.

¢ Differentiate between Hermitian and Skeew Herrmitian matrices.

e Know about the sub-matrix and minor of a matrix

¢ Find the rank of any matrix

¢ Find the inverse of a matrix

e Differentiate between linearly dependent and independent vectors

¢ Find characteristics roots and corresponding characteristic vectors of a matrix

e Verify Cayley Hamilton theorem for various matrices and use it to find the inverse of a matrix.

e Learn important theorems related to characteristic roots and characteristics vectors

1.2 REVIEW OF MATRICES
1.2.1. Matrix
An array of mn numbers arranged in m rows and n columns and bounded by square bracket [ ],
brackets ( ) or || || is called m by n matrix and is represented as

a;; ap A a; ap a,
Ay Ay Ao a, A, a,,
ay Az ... Ay,
A= . . . .= ...(1)
a. a. a.
il i2 in
a;  ap ain
_aml am2 amn aml am2 amn

(1) is known as m x n matrix in which there are m rows and n columns. Each member of m x n matrix is

known as an element of the matrix.

Note:

1. In general, we denote a Matrix by capital letter A = [a;;], where a;; are elements of Matrix in which
its position is in i™ row and j™ column i.e. first suffix denote row number and second suffix denote
column number.

2. The elements ajj, a,..., a,, in which both suffix are same called diagonal elements, all other
elements in which suffix are not same are called non diagonal elements.

3. The line along which the diagonal element lie is called the Principal Diagonal.
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1.2.2. Zero Matrix or Null Matrix. A Matrix in which each elements is equal to zero is called a zero
matrix or null matrix.

0 0 0 00
0 00
e.g., or{0 Ojor{0 O O

0 00
0 0 0 00

are zero matrix respectively of order 2 x 3; 3%2 and 3x3.

In general we denote zero matrix of order mx n by Oy, « . Matrix other than Zero Matrix are called Non-
Zero Matrix.

1.2.3. Square matrix. Matrix in which number of row becomes equal to number of column is called
square matrix i.e.

If matrix A is of type m x n, where m = n then the matrix is called square matrix otherwise it is called
rectangular matrix.

1.2.4. Row Matrix. A matrix of type 1 x n, having only one row is called row matrix. For example

(1 -2 3) is arow matrix.

1.2.5. Column Matrix. A matrix of type m x 1, having only one column is called column matrix. For
1

example | -2 | is a column matrix.
3

1.2.6. Diagonal Matrix. A square matrix in which all non diagonal elements are equal to zero is called
diagonal matrix i.e.
A square matrix A = [a;], 1s diagonal matrix if a;; = 0 for i# j. Thus
5 2 0 0
( j or |0 -7 0] are diagonal matrices.
0 - 0 0 3

1.2.7. Scalar Matrix. Diagonal matrices in which all diagonal elements are equal are called scalar
matrix i.e.
A square matrix A = [a;], 1s scalar matrix if a;; = 0 for 1#j and a;; = k, for 1 =j .Thus

2 00

0 2 0| is scalar matrix.

0 0 2

1.2.8. Unit Matrix or Identity Matrix. A scalar matrix in which all diagonal elements are unity are
called Unit matrix or Identity matrix generally denoted by ...
A square matrix A = [a;j], is Identity matrix if a;; = 0 for i#j and a;; = 1, for 1 =j .Thus
1 00
0 1 0|, isidentity matrix of order 3 x 3.
0 0 1
1.2.9. Triangular matrix is of two types:
(a) Upper Triangular Matrix. It is a matrix in which all elements below the principal diagonal are zero
2 4 8
e.g. 0 -7 -3
0 0 3
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(b) Lower Triangular Matrix. It is a Matrix in which all elements above the principal diagonal are zero

2 0 0
e.g. 4 -7 0
-6 5 3

1.2.10. Sub Matrix: A matrix B obtained by deleting some rows or some column or both of a matrix A,
is called a sub matrix of A.
2 1 5

2 1 215
For example. If A=| 0 -7 9 | then the matrices (0 7j , (0 ; 9) etc. are sub matrix of A.
-3 4 3

1.2.11. Transpose of a matrix

If matrix A is of type m x n, then the matrix obtained by interchanging the rows and the columns of A is

known as Transpose of Matrix A, denoted by A" or A’ i.e.

A= [ajj] of m x n order then

A or AT=[aji] of n x m order Matrix,

Now if A’, B’ be the transpose of matrix A and B respectively, then

(1) A =(A") i.e. the transpose of transpose of a matrix A is matrix A itself.

(i) (A + B) = A’ + B’ i.e. the transpose of the sum of two matrices is equal to the sum of their
transposes.

(i11) (kA)'=k A’, where k is a scalar.

(iv) (AB)' = B'A’ i.e. the transpose of the product of two matrices is equal to the product of their
transposes, taken in reversed order.

1.2.12. Conjugate of a Matrix

If A be a matrix of order m x n, over complex number system, then the matrix obtained from A by

replacing each of its elements by their corresponding complex conjugates is called the conjugate of A

and is denoted by A, where A is also of same order m x n. If A, A be the conjugate matrices of A, B

respectively, then

(i) (A)=A.
(i1) ( A+ B) = A + B, where A and B are conformable for addition.

(iii) (kA)=k.A, wherek is any complex number.

1.2.12. Conjugate of a Matrix

If A be a matrix of order m x n, over complex number system, then the matrix obtained from A by
replacing each of its elements by their corresponding complex conjugates is called the conjugate of A

and is denoted by A, where A is also of same order m x n. If A, A be the conjugate matrices of A, B
respectively, then

(i) (A)=A.
(ii) (A+B)=A+B,where A and B are conformable for addition.

(iii) (kA)=k.A, where k is any complex number.
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(iv) AB = A.B, where A and B are conformable for multiplication.
1.2.13. Transpose Conjugate of a Matrix
The transpose of the conjugate or conjugate of the transpose of a matrix A is called Transpose conjugate

of A and is denoted by A°. Thus

A’ =(R) =(A).
IfA°, B’ denote the transposed conjugate of A, B respectively, then
(i) (A’ =A.

(ii) (4+B)’ =A’ + B?, where A and B are conformable for addition.
(iii) (k4)’ =k.A?, where k is any complex number.
(iv) (4B)’ =B’.4°, where A and B are conformable for multiplication.

1.2.14 Adjoint of a Square Matrix
If A is an n- rowed square matrix, then adjoint of A is defined as a transpose of matrix obtained by
replacing each of its elements by its cofactors.

Theorem 1.1: If A be an n-square matrix, then A(adj. A)= (adj.A)A=|A

I, where I, denotes the unit
matrix of order n.
Theorem 1.2: If A and B are square matrix of the same order n, then adj. (AB)=(adj.B)(adj.A) .

1.2.15 Inverse of Square Matrix

Let A be n-square matrix, if there exist an n-square matrix B such that

AB =BA =1 _, then the matrix A is called invertible and the matrix B is called inverse of A. Inverse of a
square matrix is denoted by A™".

Note. 1. From definition it is clear that A is the inverse of B.

2. A non-square matrix does not have any inverse.

1.2.16 Singular and Non Singular Matrices

A square matrix A is said to be singular or non singular according as |A|=0or|A|=0.

Theorem 1.3: If A and B are two non singular matrix of order n, then (AB)' =B'A™.
Proof: Given, A and B are two non singular matrices.
~.|A = 0| and |B|# 0and hence |AB|=|A||B|#=0

Consider
(AB)(B'A")=ABB")A" [-BB'=1]
=ALA"
=(AL,)A" = AA" [ Al =A]
=1, [- AA™=], ]

Now consider
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(B'A™)(AB)=B(A"A)B" [ AA™=T ]
~BIL B’
= (BIL )B'=BB" [ BI =B]
=1 [-BB'=I ]

So, (AB)(B'A")=(B'A")(AB)=I, = (AB)'=B'A".
Theorem 1.4: The adjoint of non singular matrix is non singular.

Proof: Let A be a non singular matrix of order n. Then |A| #0.

As we know that A(adj. A)=|All,

Now, taking determinant both sides, we get
|Al[adj.A|=|A

", dividing both side by |A|# 0, we get

ladj. A|=|A["" as |A] £ 0= |adj.A| % 0

Hence adjoint of a non singular matrix is non singular.
Theorem 1.5: If A is a non singular matrix of order n. then

() [2di-Al=|A (b 2diadi- A)=[A A

Theorem 1.6: The inverse of every square matrix, if exist, is unique.
Theorem 1.7: The necessary and sufficient condition for any square matrix A to be invertible is that A

n-1

is non singular.
Theorem 1.8: If A is non singular matrix, then det(A™)=(det A)".

Theorem 1.9: If A is non singular matrix, then A’ is also non singular and (A)"' =(A™) .

1.2.17. Solution of System of Linear Equations
Any given system of linear equations may be written in term of matrix, such that

AX=B (1)
where
a, b, ¢ X d,
A=la, b, ¢,|,X=|y|and B=|d,
a; by c; z d,

A is known as co-efficient matrix.
If we multiply both sides of (i) by the reciprocal matrix A", then we get A" AX =A"'B

(A'A)X=A"B = IX=A'B = X=A'B
X (A, A, A,] [d,

= y =% B, B, B;|x|d,| whereA=0
z C, C, C,| |d;

[Ad, +A,d, +Ad,
B,d, +B,d, +B,d, ...(11)
_Cld1 +C,d, +C,d;

B> | —
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Hence from (ii) equating the values of x, y and z we get the desired result.
This method is true only when (i) A # 0 (i1) number of equations and number of unknowns (e.g. x, y, z

etc.) are the same.
Example 1. Solve the equations with the help of determinants :
x+ty+z=3, x+2y+37=4, x+4y+9z=06.
1 11
Sol.  The co-efficient determinantisA=|1 2 3 =2#0

1 4 9
31 1
x=l423:> x=l><4=2
2 2
6 4 9
1‘1 31
y=o1 43| = y=%(2)=1:>y=1
169
1'1 1 +3
2= 2|1 2 +4| = z=%[—4+6+(4—6)]=0:> 2=0
1 4 +6

Solutionisx=2,y=1,z=0.
1. 3. Symmetric And Skew Symmetric Matrices

1.3.1. Symmetric Matrix
A square matrix A = [a;j] is said to be symmetric if a;; = a;; for all 1 and j

a h g 1 23

Examples h b f|, |2 5 4

g f ¢ 3 4 7

1.3.2. Skew Symmetric Matrix
If a square matrix A has its elements such that a;; = —a;; for i and j and the leading diagonal elements are
0 2 -3 [0 h ¢

zeros, then matrix A is known as skew matrix. For example|-2 0 1 |, |-h 0 —f| are skew
3 -1 0| |-g £ 0

symmetric matrices.

Example 1: Every square matrix can be expressed as the sum of symmetric matrix and a skew-

symmetric matrix in one and only one way.
Solution. If A be any square matrix, then we consider

B=%(A+A') and C=%(A—A’)

= BrC=(ATA)FL(A-A)= J(ATAFA-A)=A

Similarly B’ = %(A + A = %[A' +(A)] = %[A’ +A]= %(A +A)=B
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ie. B’ =B. This implies B is symmetric matrix
Now, we consider
1 1 1
C==—A-A)Y==[A'-A)]==A"-A
(A -AY = A - (A)]= (A - A)
1
-—(A-A")=-C.
(A A)
i.e. C'=-C.
Hence C is a skew symmetric matrix.

Therefore, every square matrix A can be expressed as A = B + C, where B = % (A + A’), which is

symmetric matrix and C = %(A — A') 1s skew skew-symmetric matrix (*.- C' = —C). The same process

can be used to show that the result is unique.
Example 2: Every skew symmetric matrix of odd order is singular.
Proof: Let A be a Skew Symmetric matrix of order n, where n is odd.

A =-A
Taking determinant both sides
So,
[Al=]Al=[-DA]
|4|=(1)" |4] (- [kA| where k is scalar = k" [A[)
|4|=-|4| (- nis odd)
2|4|=0=|4|=0

Thus, A is a singular matrix.
1.4 HERMITIAN AND SKEW HERMITIAN MATRIX
1.4.1. Hermitian Matrix
A square matrix A=[a;] over the complex numbers is said to be Hermitian if the transposed conjugate of
the matrix is equal to the matrix itselfi.e. A"=A .

Suppose A=[a;]is of the type m x n, then Ae=[aij] will be of the type n x m where a; = a_ji

So, for the matrix A to be Hermitian , m=n and a; = a_ji for all 1 and j.

0 2.3 10 1+ i
—-3i
For example L 3 { }, 1-i 8  5+4i| are Hermitian matrices.
+3i
- 5410

Corollary: A Hermitian matrix has all its diagonal elements as real numbers.

Proof: Let A be Hermitian matrix.

~a;=a; ,foralliandj.

Putting j = I for the diagonal elements, we have

a; = a_ji for all 1
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S a+if=a-if ['.'aij:a+iﬁ’:>a_ij:a—iﬂ]
=2if=0= =0
-.a; = a , Thus the diagonal elements of a Hermitian metrix are real numbers.

1.4.2. Skew Hermitian Matrix
A square matrix A=[a_.] over the complex numbers is said to be Skew Hermitian if the transposed

1

conjugate of the matrix is equal to the negative of matrix itselfi.e. A’=-A.

Suppose A=[a;]is of the type m x n, then Ae=[aij] will be of the type n x m where a; =-a;

n

So, for the matrix A to be Skew Hermitian , m=n and a; = —a_ji for all 1 and j.
101 1+ i
0 2-3i . . . . :
For example vv3i 0 I -1+1 81 5+4i | are Skew Hermitian matrices.
-2+
: i 5+ 0

Corollary: A Skew Hermitian matrix has all its diagonal elements as either zero or purely imaginary.
Proof: Let A be Skew Hermitian matrix.

Soay = —a_ji , for all i and j.
Putting j =1 for the diagonal elements, we have

a; =-a; forall 1

S a+iff=—a+iff [va, =a+ifi=—a, =—a+if]
=20=0=>a=0
-.a; =if3, Thus the diagonal elements of a Skew Hermitian metrix are either zero or purely imaginary
Example 1: If A is square matrix then prove that
(i) . A+A’ is Hermitian matrix.
(ii)) A-A°" is skew Hermitian matrix.
Solution: (i) Consider
(A+A")’=A"+A")’
=A"+A  [QA%)'=A]
=A+A’
Thus, A+A’is Hermitian matrix.
(i) Consider
(A-A")"=A"-(A")’
=A"A [ (A"'=A]
=(A-A?)
Thus, A-A’is Skew Hermitian matrix.
Example 2: Every square matrix A can be expressed in one and only one way as P+iQ, where P and Q

are Hermitian matrices.

Solution. We have
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A=%(2A) :%[A+A‘9 +A4-A4°]

1 1
=—(A+A%)+=(4-A°
2( ) 2( )

=1(A+A")+i.i_(A—A") =P+iQ
2 21

where, P=%(A+Ae) and Q=%(A-Ae)
1

Now, Pe=%(A+Ae)e = %(A6+A)=P

and

0 1 00 1 0
= —(A-A") =-—(A"-A
g A =5 AA)

- %(A-Ae) —Q [+ (KA)'=KA"]

Thus both P and Q are Hermitian.

Hence, A can be expressed as P+iQ, where P and Q are Hermitian matrices.

To prove that this expression of A is unique:

Let, if possible A=R+iS be another expression for A where R and S are Hermitian. We shall prove that

R=P and S=Q

Now, A°=R+iS)°=R’+iS*=R—-iS [RandS are Hermitian]

A+A’ =(R+iS)+(R—-iS)=2R
=R =%(A+Ae) =P

Also
A-A’ = (R+iS)—(R—-iS)=2iS

= 8= (A-A")=Q
21

Hence, the expression for A is unique.

1. Express the following matrix as the sum of a symmetric and skew symmetric matrix

Check Your Progress
-1 7 1
2 3 4.

5 05
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-1 2 3 0 > -2
2 2
: .. |9 . - S
Ans.  Symmetric matrix is 5 3 2 |and skew symmetric matrix is ) 0 2
3 25 2 -2 5

2. Show that value of determinant of skew symmetric matrix of odd order is always zero.
3. If A is any square matrix, prove that AA’ and A’ A are both symmetric
4. If A is a skew symmetric matrix of order n, then show that adj.A is symmetric or skew symmetric
according as n is odd or even .
1.5. RANK OF A MATRIX

Let A be m x n matrix. So, A has sub-matrices of various orders. The determinant of any such sub-
matrices is defined as minor of matrix A of order r where r <m and r <n [or r <m, m < n]. If all
minors of order (r + 1) are zeros and we have at least one non-zero minor of order r, then it is said that
the rank of matrix A is r and rank of r is represented by p(A) = rank of A =r.
Thus from the above definition of the rank of a matrix A, we have the following observations:

0 00
(@)IfA=]0 0 0| =null matrix then rank of A = p(A)=0.

0 0 0

(b) If A is a nonzero matrix then rank of A i.e. [] (A)> 1.
0 0 0 0 .. 0

0O 1 0 O
0 01 0 0 .. 0

(c) I[f Aism x munit matrix then |A |=|.. .. .. .. .. .. ..|=1=0
0 0 O 0

i.e.rank of A=p(A)= m.
(d) If A is m x n matrices, then p(A) < min of m and n.
(e) If all minors of order r are equal to zero then rank of A = p(A) <r.

1 4 5
Example 1. Determine the rank of the matrix A=|2 6 8
3 7 22
Sol.  Operating R, - R, — 2R; and R; = R3 — 3R, we get
1 4 5
~10 1 =2

0 -5 7
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Again operating R, —» —%Rz, we get
1 4 5
~10 1 1
0 -5 7
Next, operating R3 — Rj + 5R,, we get
1 4 5

~10 1 1
0 0 12

This implies that rank of A = 3.

() N SN )
D W

1
Example 2. Determine the rank of the matrix A = | 1
2

Sol.  Operating R, > R, — R; and R; — R3 — 2R,
1 2 3
~10 2 -1
0 2 -1
Next, operating R; — R3 — R,, we get
2 3
—1|. Here 3™ order minor is zero.

1
~10
0 0

2
0
But 2™ order minors exist i.e. .

: ‘=—2—6=—8¢0

So, the rank of matrix A = 2.

Check Your Progress

5. If A is an n-square matrix of rank n-1, show that adj. A # O.

6. If A is non zero column matrix and B is non zero row matrix, show that p(AB)=1

1.5.1. Elementary Transformations (or Operations) on A Matrix

The following operations on a matrix are called elementary transformations (i.e. E operations or E-

transformation)

(a) The interchange of i"™ and j™ rows is represented by Rj;, and the interchange of i and j™ columns is
represented by Cj;.

(b) Multiplication of each element of a row or a column by a non-zero number k.

i.e. the multiplication of i™ row by k is represented by kR; and the multiplication of i™ column by p is
represented by pC;.

(c) Addition of m times the elements of a row (or column) to the corresponding elements of another row
(or column) multiplied by n, where m= 0, n # 0.

The addition of m times i row to the n times jth row is represented by mR; + nR;.
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If a matrix B is obtained from matrix A by such transformation, then the matrix B is called the
equivalent matrix to matrix A. If matrix B is obtained from A by applying finite number of elementary
row operation on A, then B is row equivalent to A. If matrix B is obtained from A by applying finite
number of elementary column operation on A, then B is column equivalent to A.

Two such equivalent matrices A and B are denoted as A ~ B and the symbol ~ is used for equivalence.
So, two equivalent matrices have the same order and same rank.

Theorem 1.15: The rank of a matrix remains unaltered by the application of elementary row and
column operations.

Proof: Let A be m X n matrix, such that

a, ... a

n

a a

ml mn

If p(A)=r, then every minor of order r+1, if any vanishes and there will be at least one non zero minor
of A of order .

Now consider a minor of order r+1 denoted by M.

(1) If we interchange any two rows or columns of A, the value of determinant remains unaltered by
numerically value but the sign is changed.

(2) If one row and column of A is multiplied by any scalar k, the value of determinant multiplied by the
scalar k.

(3) If we applyR; —> R;+kR; or C; — C;+kC;, then the determinant remains unchanged.

We have seen that in each case of elementary row/column operation, the value of M,;; remains
unaltered. Since all minor of order r+1 in A are zero , they will also be equal to zero in all equivalent
matrices.

Thus p(B) <p(A), where B is a matrix obtained by elementary operations.

Again, A can be obtained back from B by elementary operations of the same type and so, we have
p(A)<p(B)

Hence we conclude that p(A)=p(B)i.e. the rank of any matrices remains unaltered by the application of
finite chain of row/ column operations.

1.5.2 Row Echelon Matrix:

A matrix 4 =[a,] is called a row echelon matrix if the following conditions are satisfied:

(1) The first non zero element in each non zero row is unity which is called leading entry of row.

(2) All the non zero rows,, precede the zero rows, if any.

(3) The number of zeros before the leading entry in each row is less than the number of such zero’s in
the succeeding rows.

1

For example 4= is in row echelon form.

o O O O

S O O =N
S O = W A
S = B~ DN W
S NN o -
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1.5.3 Row reduced Echelon Form:
In addition to the above three conditions, if a matrix satisfies the following conditions:

Each column which contains a leading entry of a row has all other entries zeros, then the matrix is said
to be in row reduced echelon matrix.

1.5.4 Row Rank and Column Rank of a Matrix
Row rank of a matrix, say A is the number of non zero rows in the row echelon matrix A and is denoted
by pr(A).

Column Rank of a matrix, say A is the number of non zero columns in the column echelon matrix A and
is denoted by p.(A).

Note: (i) Every matrix is row equivalent to row echelon matrix.
(i1) Every matrix is column equivalent to a column echelon matrix.

(ii1) If a matrix A is in row echelon form, then its transpose is in column echelon form.

01 3 -1 3 1
, 1 3 0 2 3

Example. 1.10: Reduce the matrix A= O to the row reduced echelon form and
0 4 12 -2 10 7

hence find its rank.

Solution: Applying R, - R,-R,R; - R,-2R,,and R, = R,-4R, on the matrix A,

01 3 -1 3 1

0001 -1 2
A=

0003 37

0 00 -2 3

01 3 -1 3 1

0001 -12
A=

000 0 0 1

0000 0 -1

01 3 -1 3 1

0001 -1 2
A=

0000 0 1

0000 O O

This is the required row reduced echelon form of the matrix A. Since, the number of non zero rows is 3,
thus row rank of A is 3.
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Check Your Progress
7. Find the row rank of matrix
34 1 2
A=[3 2 1 4/|.
7 6 2 5
Ans. 3
1 2 3
8. Reduce the matrix | 1 4 2 |to the row reduced echelon form. Also find their row rank.
2 6 5
Ans. 2

1.5.5 Rank of Product of Two Matrices

Theorem 1.16: The rank of product of two matrices cannot exceeds the rank of either matrix i.e.
pP(AB) <p(A) and p(AB) < p(B)

Proof: Let p(A)=r,,p(B)=rt, and p(AB)=r
Now we reduce the matrix A to the normal form, A ~ {O}
where M is a matrix of 1, rows and 1, rank

M
Post multiplying by B, we get AB ~ {O } B

M
The matrix {O}B will have at most first 1, non zero rows which can obtained by multiplying first T,

non zero rows of M with the column of B.

AB Mg l<
Thus’p( )~p o[BI

= p(AB) <1, = p(AB) < p(A)
Thus, the rank of product AB < rank of of the prefactor A ...... (1)
We have, r=p(AB)=p[(AB)]
[As the rank of transpose of a matrix is same as that of original matrix]
=p(BA)<p(B) [ Rank of the product < Rank of prefactor]
. p(AB)<p(B).
Theorem 1.17 The rank, column rank and row rank of a matrix are all equal.
Proof: Let r be rank, s be the row rank and t be the column rank of a matrix A of type m x n.

i.e. pg(A)=s, p.(A)=tand p(A)=r
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B
As the row rank of the matrix A is s, thus there must be non singular matrix P such that PAZ{O} ,

where B is a matrix of type s x n. We know that pre or post multiplication by non singular matrix does
not affect the rank of matrix, therefore

p(PA)=p(A)=r ... (1)

Since every square minor of of PA of order (s+1) has atleast one row of zeros, thus, each minor of PA of
order (s+1) is equal to zero.

p(PA) <s = r <s[Using (i)] ..(11)

C
As p(PA)=r, thus there must be a non singular matrix Q such that QAZ{O}, where C is a matrix of

type r X n.

~Pr(QA) =P (A)=s

Since the matrix QA has only r non zero rows, thus
p(QA)<r=s<r ..(1i1)

From (ii) and (iii), we haver=s ..(1v)
Similarly, r=t and hence s=r=t

Thus, p(A)=pg (A)=p(A).

1 2 -1
Example 1: Express A=|2 5 -2 |as the product of elementary matrices.
1 2 1

Solution: Applying R, = R,-2R,R; = R;+(-1)R, on the matrix A,

1 2 -1
A~0 1 O
0 0 2
Applying C, = C, +(-2)C,,C, = C, +(1)C,
1 00
A~10 1 0
0 0 2

Applying R, >R, (%),

1 0 0
A~0 1 0
0 0 1

Thus, we observe that by performing the elementary operations

R, - R,-2R,R,+(-1)R,C, +(-2)C,C; +(1)C}, R, (%)



Algebra, Calculus & Solid Geometry 17

Successively, we can reduce matrix A to I3

If RE,,(-2),RE;,(-1),CE,,(-2),CE;,(1),RE, (%j are the corresponding elementary matrices, then

13 :RE3 (%j RE31 (_I)REzl (_2)CE21 (_2)CE31 (1)

= A=[RE,,(-2)] '[RE,, (-] [RE3 (%ﬂ L[CE,,(-2)]'[CE,, (D]

= A=[RE,,()][RE,, (V][ RE, (2) |[CE,,(-D][CE,,(2)]

1 0 O0ff1 0 Off1 0 Ofj1 0 —-1||1 2 O
=A=2 1 00 1 OO0 1 O0|jO 1 OO0 1 O
0 0 1|1 O 1O O 2{{0 O 110 0 1

1.6 ELEMENTARY MATRICES

Elementary matrix is a matrix which is obtained from an identity matrix I, by a single elementary
transformation. For example, consider

1 0 0
=0 1 O
10 0 1
Applying R, = R, +R,+3R;

[1+0+3.0 0+14+3.0 0+0+0 1 1 3
I, ~ 0 1 0 ~10 1 0
0 0 1 0 0 1

which is an elementary matrix.
Note: All the elementary matrices are non singular.

1.6.1 Some Theorems on Elementary Matrices

Theorem 1.18: If A and B Are two matrices over the field F of the type (mxn) and (nxp) respectively,
then application of any elementary row (column) operation to A(B) results in the application of the same
to the product matrix AB and vice versa.

Proof: Let A= [a,],,, and B= [b, ]

Rl

mxn nxp

Le. A= 1.{2 andBZ[C1 C, . Cp]
R

m

where R =[a, a,, .. a,].1<i<m
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Y .
and C; = 1< j<p.

'R, | RC, RC, .. RC,]
R, RC RC, .. RC,
R RC, RC, .. RC
O e B
R, RC, RC, .. RC,
R, | RC RC, .. RC,
_ U_
b,
whereRC, =[a, a, .. a,] 1<i<m,1<j<p
_b“j_
=ai1b1j aiZij - ainbnj: aikblg'

k=1

Case I Applying elementary row operation R, +¢R,

,C, are columns of B.
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RC, RC, .. RC, ]
R,C, RC, .. R,C,
(R +tR)C, (R +tR)C, .. (R+tR)C
AB = ?
Then : Do :
RC, RC, .. RC,
R C, RC, .. R,C,
Case I Applying Rt # 0to AB, we get
' RC, RC, .. RC,| [R]
R,C  RC, .. RC, R,
t(RC, tRC, .. tRC IR,
AB=| : 1=l e ¢ L]
RC, RC, .. RC, R,

R,C, RC, .. RC, R,
The other cases can similarly be dealt with. Further, on similar lines it can be verified that application of
elementary column operation on B results in the application of the same on AB and vice-versa.
Theorem 1.19: Every elementary row (column) transformation of a matrix can be obtained by pre-
multiplication (post-multiplication) with corresponding elementary matrix.

Proof: Let A be mxn matrix.

We write A=1_A
If o denotes any elementary row transformation, we have

aA=o(I A)=(al )A=EA,
Where E is the elementary matrix corresponding to the same row transformation « .
Similarily,we write A=Al
If o denotes any elementary column transformation, we get
a(A)=a(Al )=A(al, )=AE,
where E,is the elementary matrix corresponding to the same column transformation o .
Theorem 1.20: The inverse of an elementary matrix is an elementary matrix of the same type:
(i) (RE;)" =(REy) (i) [RE(K)]'=RE (k") (i) [RE;(k)]'=RE,(*)
(iv) [CEij ()] :CEij (k).
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Proof: (i) REj has been obtained from I by applying R;;and obviously, if we apply R;; again we get
. But applying R;; to RE;means pre-multiplication of RE;with corresponding elementary matrix
RE;, i.e.

(RE)(RE;) =1

(RE;)" =RE,
(i) On applying R,(k)on I, we get RE,(k),k #0and if we apply R,(k")on RE,(k), we get L. Similar
to (i), we have [RE,(k™)][RE, (k)]=I
= [RE,(K)]" =[RE, (k)]
Similarly, we can prove (iii) and (vi).
Theorem 1.21: The rank of the transpose of a matrix is equal to the original matrix i.e. p(A")=p(A)

Proof: Consider a matrix A of order ( mxn ).Then the transpose of A denoted by A"
will be of order (nxm).

Let p(A)=r i.e. there exist a non zero monor of order r of |A| .

Let |Mr be such minor.

Then M which is transpose of M, , will be sub-matrix of A" .

Since the value of determinant remains unchanged when rows and columns are interchanged, therefore

M, | =[m7
Since M, |=0 :>|MrT #0
= p(AT)>r (1)

Now consider a square sub-matrix N" of order (r+1) from A" . Then N is a sub-matrix of A.
Since p(A)=r, therefore all minors of order (r+1) will be zero.

= IN|=0
= |NT| =0
= p(AT)<r
From (1) and (2), p(AT)=r
Hence p(AN=p(A).
Theorem 1.22: If A be an mxn matrix of rank r, there exist non singular matrix P and Q such that
PAQ— I O
O O

. . . ) I. O
Proof: As A is an mxn matrix of rank r, therefore it can be transformed into the form [6 O} by

elementary transformations.
Since elementary row (column) operations are equivalent to pre (post) multiplication by the
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corresponding elementary matrices, therefore there exist elementary matrices P,P,,....P, and

Q,,Q,,.....Q, such that

I O
PP,,....P,PAQQ,.... QS{O o}

Now, since each elementary matrix is non singular therefore product P=P, P, ,.....P, and Q=Q,,Q,.,.....Q
. . I, O
are non singular matrices, such that PAQ= (; ol

Theorem 1.23: If A be an mxn matrix of rank r, then there exist non singular matrices P such that

B
PAZ{O} , where B is an rxn matrix of rank r and O is (m-r)xn matrix.

Proof: We know that if A is mxn matrix of rank r, therefore there exist matrix P and Q such that
PAQ={Ir O]

O O
Also every non singular matrix can be expressed as product of elementary matrices. Since Q be non

singular matrices means Q' exists and can be expressed as product of elementary matrices K K, K,...K,.
) I

I @)
Equation (i) becomes PA=L; O}Q'lz[é O}K1K2K3...K1, since post multiplication of

elementary matrices amounts to E—column transformations, last m-r rows of (1) being zero rows,
remain zero rows on applying K K,K,..K,.

B
Thus, We get a relation of the form PA:[O} , where B is an rxn matrix.
. . . | B]. .
Since elementary transformations do not alter the rank, therefore the rank of matrix [O} is r. Since B has

B
r rows, so p(B)=r and last m-r rows of {O} are Zero rows.

Theorem 1.24: If A be an mxn matrix of rank r, then there exist non singular matrices Q such that

AQ=[C O], where C is an mxr matrix of rank r and O is mx(n-r) matrix.

Proof: Do yourself as above theorem.

Check Your Progress
1 2 -1 3

1. Find the rank of matrix | —2 -4 4 -7 | by reducing it to normal form.
1 2 1 2

Ans. Rank = 2.
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1 2 -1
2. Express A=|2 5 =2 | as the product of elementary matrices.
1 2 1
1 0 0)1 O O)1 O Oyl O —-1)y1 2 O
Ans. A={2 1 0|0 1 0O 1 OfjO 1 OO 1 O
0O 0 1){0 0 2){0 0O 2){0 0 1 ){O0 O 1

1.7 Inverse of Matrix
If A is a non singular matrix, then inverse of matrix A exist and is defined as matrix A" satisfies

AA'=A"A=I, where I is unit matrix of same order as that of the matrix A. To find the inverse of matrix
A write A=IA , then perform same suitable elementary row (column) operations on the matrix A and on

the right hand side till we reach the result I=BA . Then A'=B.

1 3 2
Example 1: Find the inverse of matrix A={0 4 1 |using the elementary operations.
5 2 3
1 3 2 1 00
Solution. We write A=IAie., |0 4 1|=|0 1 O|A
5 2 3 0 0 1
Operating R, > R,+(-5R,,R, > R, x%
1 3 2 1 0 O
1 1
weget, |0 1 —|={0 — O0]A
4 4
0 -13 -7 500 1

Operating R, - R, +(-3)R,,R; - R; +13R,,

1o 2 =3
4 4
01 Llzlo L ola
4 4
00 B s B
L 41 L 4

. -4 - -1
Operating R, - R, X(E),Rl - RlJ{ZSJRaaRz —R, J{TJR},
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211
1 0 0 33 3 10 5 5
01 0=+ 2 Lialls 7 1|a
00 1 31515 Bl 213 4
4 13 4 T
'3 15 15
10 5 5
A'lzi -5 7 1
15
20 —13 —4

Problems to Check The Progrress
9. Using elementary operation, find the inverse of the following matrices.

1 2 -1
A=]-1 1 2
2 -1 1
3 -1 5
Ans. A‘lzi 5 3 -1].
14
-1 5 3

1.8 LINEAR DEPENDENCE AND INDEPENDENCE OF ROW & COLUMN MATRICES.
Any quantity having n components is called a vector of order n. If a,,a,,.....a, are elements of fields (F,
+, .), then these numbers written in a particular order form a vector.

Thus an n-dimensional vector X over a field (F,+, .) is written as X=(q,,a,,.....a,)
where a, € F.
Row matrix of type 1xn is n—dimensional vector written as X=[a ,a,,.....a, |
Column matrix of type nx1 is also n dimensional vector written as
al
a2

X=| *|or[a, a, . a,]

a

As the vectors are considered as either row matrix or column matrix, the operation of addition of vectors
will have the same properties as the addition of matrices.

1.8.1 Linear Dependence:

The set of vectors {v,,v,,.....v_}are said to be linearly dependent if there exist scalars a,,a,,.....a, notall
zero such that a,v,+a,v,+...+a v, =0

1.8.2 Linear Independence:

The set of vectors {v,,v,,....v, }are said to be linearly independent if there exist scalars a,.,a,,.....a
such that a,v,+a,v,+..+a v _=0gives a,=a,=....=a =0.

Examplel: Show that the vectors u=(1,3,2), v=(1,-7,-8) and w=(2,1,-1) are linearly independent.
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Proof: The vectors are said to be linearly dependent if
au+ bv +¢cw=0 where a, b, ¢ are not all zero.

means a(1,3,2)+b(1,-7,-8)+c(2,1,-1)=(0,0,0) (1)

(atb+2c, 3a-7b+c, 2a-8b-c)= (0, 0, 0)

which gives a+tb+2c=0 (2)
3a-7b+c=0 3)
2a-8b-c=0 4)

Adding (3) and (4), we have
5a-15b=0 = a=3b
From (3) 3(3b)-7b+c=0 = 9b-7b+tc = c=-2b
Putting a=3b and c¢=-2b in (2), we get

3b+b-4b=0, which is true. Giving different real value to b we get infinite non zero real values of a and c.

So a, b, ¢ are not all zero.
Hence given vectors u, v and w are linearly independent.

Theorem 1.25: If two vectors are linearly dependent then one of them is scalar multiple of other.

Proof: Let u, v be the two linearly dependent set of vectors. Then there exists scalars a, b(not both zero)

such that
autb.v=0 (1)
Case 1. When a#0
From (1), au=-bv = u:—RV
a

Hence u is scalar multiple of v.
Case II. When b0

From (1), bv=-au = V=-%u

Hence v is scalar multiple of u. Thus in both cases one of them are scalar multiple of other.

Theorem 1.26: Every superset of a linearly dependent set is linearly dependent.
Proof: Let S, ={X,,X,.....X,} be set of n vectors which are linearly dependent.

Let S, ={X,.X,.......X, X, ,;--..,X,} where r >n be any super setof S_.
As {X,,X,..... X} 1s linearly dependent set

.. There are scalars a,,a,,a,,.......,a, not all zero such that

= aXta,X,*...+a X +0X  +0X ,+..+0X =0
As a,,a,,a,,.......,a_ are not all zero
oo Set S =1{X.X,......X,,X,,..... X, } 1s linearly dependent set.

Hence every set of linearly dependent set is linearly dependent.
Theorem 1.27: Every subset of linearly independent set is linearly independent.
Proof: Let S, ={X,,X,.....X_} be set of n vectors which are linearly independent.

Let S, ={X,.X,.......X,} wherer <n be any subset of S, .
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As {X,,X,.....X, } is linearly independent set thus
a,X,ta,X,+.....+a X =0 gives
a,=a,=a,,...=a, =
a,X,ta,X,+.....Ta X =0where a,=a,=a,,....=a, =0
= Set S, ={X,,X,.......X,} is linearly independent set.
Hence every subset of linearly independent set is linearly independent.
Theorem 1.28: If vectors X,,X,.....X are linearly dependent, then at least one of them may be written

as linear combination of the rest.
Proof: Since the vectors X,,X,......X , are linearly dependent, therefore there exist scalars

a,,3,,a5,...... ,a_not all zero, such that
aX ta, X, +.....+a X =
Or

a, X, +ta,X,+...+a X +a X, ..Ta,X =0

i+l

Suppose a. #0.

-aX.=a X ta,X,+..a X +a X, ..+a X
a a a, a, a

or X=—"LX+—=2X +. . +—-X +X +-LX
-a. -a. -a. -a. -a.

1 1 1 1 1

Hence vector X, is a linear combination of the rest.
Theorem 1.30: If the set {X,,X,......X, }is linearly independent and the set {X,,X,.....X ,Y}is linearly
dependent, then Y is linear combination of the vectors X ,X,.....X, .
Proof: Consider the relation
a,X,ta,X,+...... +a X +aY¥=0 (1)
As set {X,X,.....X,Y}is linearly dependent
a,,8,,a5,...... ,a_,a are not all zero

We claim that a # 0. If a=0, then (1) becomes
a,X,ta,X,+....+a, X =0

a,=a,=a,,...=a, =
Then from (1), the set {X,.,X,.....X,,Y}1is linearly independent which a contradiction to the given
condition is. Thus a = 0 is not possible. Hence a # 0
From (1), we have -aY=a X, +a,X,+......+a X_

a a a )
or Y=-1X+2X, +... +—=X_ , which proves the result.
-a -a -a

Theorem 1.31: The kn-vectors A, A,,......,A, are linearly dependent iff the rank of the matrix

A=[A,A,,...., A, ] with the given vectors as columns is less than k.
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where x,,x,,......,x, are scalars
a4 a, Qi
a a a
21 22 2k
=X, +X, ot X =0
anl an2 ank

=a,;x +ta,x, +...+a,x, =0
Ay X, +ayXy +eoeetayx, =0
a,x +a,x,+...+a,x, =0

Which can be written in matrix form as

a,, ap A || %

) Ay Ao || *2 0
|a, Ay au % | L[0]
= AX=0

Let the vectors A, A,,......

,A, be linearly dependent.

So, from the relation (i), scalars Xx,,x,,......,x, are not all zero and thus the homogeneous system of

equations given by (ii) has non-trivial solution. Hence p(A)<k .Converse of this theorem is also true.

Theorem 1.32: A square matrix A is singular iff its columns (rows) are linearly dependent.

Proof: Let n be the order of the square matrix A and A ,A,,......,A  be its columns.
SO A=[ALA,, LA
Proceed in same way as above theorem to prove p(A)<n

Since p(A)<n, thus |A| =0and hence A is singular matrix.

Conversely, the column vectors of A are linearly dependent.
Theorem 1.33:
A=[A,A,

The kn-vectors A,,A,,.....,A, are linearly independent if the rank of the matrix

,.es A |18 €qual to k.
Proof: Proceed in the same way as above theorem to obtain AX=0. Now suppose .

Then |A| # (0 and homogeneous system of equations given by (ii) has trivial solution only.

Thus, the vectors A, A,,.....,A, are linearly independent.
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Theorem 1.34: The number of linearly independent solution of the equation AX=0 is (n-r) where r is
the rank of matrix A.

Proof: Given that rank of A is r which means A has r linearly independent columns. Let first r columns
are linearly independent.

Now, A=[C,,C,,....C.,.....,C ], where C,,C,,.....,C_are column vectors of A.

”

X
X

[C\.Cy,oes G, 1| 7 |20 Coxy + Coty +. 4 Cyx, = (i)
X

As the set [C,,C,,.....,C ]1s linearly independent, thus each vector C_,C,_,,.....,C can be written as

r where k=n-r ..(11)

ay, ay, ay
a; ay %)
a,, a,, a,
X, =|-11,X,=| 0[,....X_.=| O
0 -1 0
0 0 0
| 0] | 0] | -1
Thus, AX=0 has (n-r) solutions.
Check Your Progress
1 1
1. Find the vector p if the given vectors are linearly dependent | —11{,| p |,| 0 |-
3)13

Ans. p=2.

1.9 CHARACTERISTICS MATRIX
If A be a square matrix of order n, then we can form the matrix [A — AI], where I is the unit matrix of
order n and A is scalar. The determinant corresponding to this matrix equated to zero is called the
characteristic equation 1i.e. if A — Al be the matrix then
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ay — A ap ap ay,
as ay — M ar; Ay
a a v — A ... a
31 32 33 3
|A — Al = "1 =0 ...(1)
anl an2 an3 ann _}\‘

is the characteristic equation of A.

On expanding the determinant (1), the characteristic equation may be written as

DA+ a A a APt L ta A ta, =0
which is n™ degree equation in A.

The roots of (1) are called eigen values or characteristic roots or latent roots of the matrix A.
Eigen Vectors

ay A A Ay
dy Ap Ap Az,
) as;; a;, a a
We take the matrix A= | ' "% 7 "
_anl an2 an3 ann
]
X3
And if X = | x; | where xi, X2, ..., X, are vectors
X n
then the linear transformation Y = AX ...(2), transforms the column vector X into the column

vector Y. Generally, it is required to find such vectors which either transform it is into them selves or to
a scalar multiple of themselves. If X be such a vector which is transformed into AX using the
transformation (2) then AX = AX = AX-AX=0
ie. [A - AIX =0 ...(3)
The matrix equation (3) represents n homogeneous linear equations.
(an—Axptapxt+apxs+...tanx, =0
X t+t@y—AMxtantxst...+tanx,=0
azix; tapx; t(ass—A)x3+ ... tapx, =0 ...(4)
an X1 +tapxot@s—A)x3+ ... tapm-Ax,=0
This equation (4) will have a non-trivial solution only if to co-efficient matrix is singular i.e. if
the determinant |A — AI| = 0.
This equation is also called characteristic equation of the transformation and is also the same as
the characteristic equation (1) of matrix A. This characteristic equation has n roots which are eigen
values of A corresponding to each root of (1), the equation (3) has non-zero solution.
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which is known as an eigen vector or latent vector. So, if X is a solution of (3) then KX is also a
solution, where K is an arbitrary constant. So, we see that the eigen vector corresponding to an eigen
value is not unique.

1 2
Example 1. Find the eigen values and eigen vectors of the matrices A = L 4} .

Sol.  The characteristic equation of the given matrix is |A — Al =0

1-A 2
:> =
2 4-A
ie. 1-2)@E-2)-4=0=> AV -50=0 = AMA—-5)=0
ie. A=0,5 eigen values of A are 0 and 5.
1-0 2
So, corresponding to A = 0 eigen vectors are given by | {Xl } =0
2 4-0fx,
1.€. x)+ 2)62 =0 and 2)61 + 4)62 =0
i.e. single equation x; + 2x, =0 = Z_%2 o forh=0 eigen vectors are (2, —1) and for A =
1-5 2
5, we have A
4-5x,
= —4x; + 2x, =0 and 2x1 —x=0.
Properties of Eigen Values
(D The sum of the eigen values of a matrix is the sum of the elements of the principal diagonal. We

will prove this property for a matrix of order 3 and the method can be extended for the matrices
of any finite order.

Let A= |a, a, ay ..(D)

Then characteristic matrix |A — AI| =0

a; — A ap aps
= a,, ay =N ay | =0
as as a3 =M
= A +Aantaptap) A )+...=0 .2
If A1, A, and A3 be eigen values of A then
A — Al = N HN O At R) — e F (=D A Ao s ...(3)

Equating the co-efficients of A% from (2) and (3), we get
A+ Ay +A3=a;; + ap + az3 which is the required result.
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(I)  The product of the eigen values of a matrix A is equal to its determinants. If take A = 0 in (3)
then, we get |A — 0| = —A;A2A3 which is the required result.

(IIT)  If A is an eigen values of a matrix A, then % is the eigen value of inverse matrix A™'. If X be the

eigen vector corresponding to the eigen value A then
AX=2X ...(4)
Pre-multiplying (4) by A™', we get A'AX = A'AX

ie. IX=2ATX = X=MA'X) = AX-= %X

This is of the same form as that in (1) from which we get that % is an eigen value of the inverse
matrix A~

(IV) If A is an eigen value of a matrix A, then % is an eigen value of A™'. As A is an orthogonal

. 1. . . - 1. .
matrix so A~ will be same as the transpose of matrix A i.e. A'=A"". So, -~ is an eigen value of

A’. But the matrix A and A’ have the same eigen values.

[since we know that |[A — AlI| = A" — AI| ]. Hence % is also an eigen value of A.

(V)  If Ay, Aa,..., Ay are eigen values of a matrix A then A™ has the eigen values A", A", ..., Ay

where m is a positive ineteger.
If A; be the eigen value of A and X be the corresponding eigen vector, then

AXi:KiXi (1)

Consider A” Xi=A(AX)) = AL Xi) = A (AX)) = LA X)) = Xiz X similarly, we proceed and find

Al X;= kf Xj and so on such that in general we get
AmXi = 7\,im Xi .. (2)

which has the same form as (1). Hence A;" is an eigen-value of A™ and the corresponding eigen vector
1s the same as that of X.
Example 2. Find the characteristic roots and characteristic vectors of the matrix

8§ -6 2
A=|-6 7 —4]|.
2 -4 3
Sol.  The characteristic equation of matrix Ais | A—Al|=0i.e.
8-A -6 2
-6 7-» -4=0
2 -4 3-A

ie. (B=M[(7-2)(B=21)=16]+6[(=6) (3 —L)+8]+2[24—2(7-2)]=0
ie.  (8=M)[21+A*—101—16]+6[-10+61] +2[24 - 14+21]=0

ie. A7+ 1807 — 850+ 40— 60 + 364 +20+ 41 =0

ie. A 1802 +450=0 ie. A=0,3,15.
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Corresponding to A = 0, eigen vectors are given by
&8 -6 2 ||x

-6 7 —4]|x, =0
2 =4 3 ||x4
i.e. equations are
8x1 —6x2+2x3=0 ..(1)
—6x; + 7x; —4x3=0 ..(2)
2x1—4x +3x3=0 ...(3)
From (2) and (3) we get
X __ X __ X ie. X _X _ X5
21-16 —-8+18 24-14 1

i.e. eigen vector are (1, 2, 2)
Similarly from (1) and (2) we get the same vectors
8-3 -6 2 |[x,
Now for A = 3, eigen vectors are obtained from | -6 7-3 -4 ||x,| =0

2 -4 3-3||x,
5 -6 2 ||x
ie. -6 4 —-4||x,|=0
2 =4 0 ||x;4
1.e. equations are
Sx1—6x +2x3=0 ...(4)
—6x1 +4x; —4x3=0 ...(5)
and 2x1 —4x, =0 ...(6)
From (4) and (5), we get
Xy _ X5 X3
24-8 —12+20 20-36
i.e. eigen vectors are (2, 1, —2) and for A = 15, eigen vectors are given by
815 -6 2 X, -7 -6 2 X,
-6 7-15 -4 x, | =0 = -6 -8 —-4||x,|=0
2 -4 3-15||x, 2 -4 —-12]|x,
1.e. equation are —Tx1 —6x; +2x3=0 ..(7)
6x1 +8xy +4x3=0 ...(8)
and 2x1 —4x; +2x3=0 ...9)
From (7) and (8), we get
12+8 -6-14 28-18 20 -20 10

i.e. eigen vectors are (2, —2, 1) corresponding to A = 15.
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Example 3. Find the eigen values and eigen vectors of the matrix

6 -2 2
-2 3 -1].
2 -1 3
6 -2 2
Sol. Letthe given matrixbe A= |-2 3 -—1].
2 -1 3

So, the characteristic equation of A is [A — Al =0
6-A -2 2

ie. -2 3-%x -1]| =0 (D
2 -1 3-A

=  (6-M)[B-1)*=1]+2[23-1)+2]+2[2-2B-1)]=0

= (6-0)[9—6L+A>—1]+2[2L—4]+2[2L—4] =0

= A HA[6+6]—A[36—-8+8]+[48-8—-8] =0

= A 1202 +36 0 —32 =0

=3 A —207 1002 +200+16A-32 =0

=X A-2(*r-8)=0 ie A=22and8.

which are the characteristic roots of (1).
Now corresponding to the eigen values A =2, 2, 8 the given eigen vectors are obtained from [A —
AlX =0.

6-L =2 2 X, 0
ie. -2 3-x -1 X, [=]0 ...(2)
2 -1 3-X X, 0
(2) may be written as
(6 —A)x; —2x,+2x3=0, ...(A)
2x1+B—-Ax2—x3=0, ...(B)
and 2x1 —x2+ (3 —A)x3 ...(C)
we now, consider different cases.
Case I. When A = 2, then (A), (B) and (C) may be written as
4x) —2x, +2x3=0 ..(A))
2x1+x+tx;3=0 ...(By)
2x1—x2tx3=0 ...(C)
If x3 =0, then from (A) and (B,), we get
-2x1+x =0 1i.e. X_X
1 2
1
and so eigen vector for A =2, forx; =01is X; = |2

0
and when x, = 0, then from (A;) and (B;) for A =2,
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X
2)C1+X3=0 = ﬁ=—3
1 =2

1
another eigen vector for A =21s Xp = |0

-2
Case Il. When A =8, equations (A), (B) and (C) become
—2x1 —2x,+2x3=0 ...(A1)
—2X1—5)C2—X3:O ...(Bll)
2x1—x3—5x3=0 ...(C1)
eliminating x; from (A;) and (B;;), we get
X +2n=0 ie. %:X—ZI ..(M)

and by eliminating x; from (A;;) and (By;), we get

X, X3

X, +x3=0 ie. l:T ...(N)
Using (M) and (N), we get % :X—zl = XT3
2
ie. corresponding to A = 8, eigen vector is X3 = | —1

1

Example 1. Find the eigen values and eigen vectors of the matrix

-2 2 -3
A= 2 1 -6/.

-1 -2 0

Sol.  The characteristic equation of the given matrix is
-2-x 2 =3
|A — Al = 2 1-» -6 =0

-1 -2 =X
ie. AM+Ar-21n-45=0 =  (AF3)R+3)A-5=0
1.e. eigen values are A =-3, -3, 5

If x, y and z be the eigen vectors. Corresponding to the eigen values A

-1-2 2 =3||x

(I) We have 2 I-A -6 |y|=0 ..(1)

-1 -2 =A||3

Now for A =5 we have
~Tx+2y—-32=0 2x—4y—-62=0
—x—=2y-5z=0

X . y . z
—12-12 -6-42 28-4

from (1) and (2)
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Hence eigen vector is [1, 2, —1] %:%:il
1 2 -3|x
(I)  IfA=-3,then from (1), weget | 2 4 -6/| y| =0 which gives only one independent
-1 2 3 ||z
x+2y-32=0 ...(3)
if we take y =0, we get x—3z=0 = %z%:%

for A = -3, eigen vector is (3, 0, 1) when y = 0.
atwhen z=0, (3) gives x +2y=0 = %:%:%
ie. eigen vector in this case is (2, —1, 0)
the eigen vectors obtained are (1, 2, -1), (3,0, 1) and (2, -1, 0)

which are the required result.

2 3 =2
Example 2. Find the sum and the product of eigen values of A= |-2 1 1
1 0 2
Sol.  The characteristic equation of matrix A is |A — Al =0
2-A 3 -2
ie. -2 1-A 1 =0
1 0 2-A
ie. Q-1 -2MQ-A)+3[1+22-)]+2)(0-1-1)=0
=X Q=AM =3A+2+3)-6L+15+2-21 =0
= WS- TIA+10-6L+15+2-2% =0
= A =57+ 19% + 19 =0
sum of the eigen value A; + A, + A3 =—(-5)=5
and the product of the eigen values is A; A, A3 =—19.
Check Your Progress
1. Determine the charecteristics roots and the corresponding characteristics vectors of the matrix
8 -6 2
A=-6 T —4].
2 4 3

Ans. Characteristics roots are 0, 3, 15.
1.10 CAYLEY-HAMILTON THEOREM
Every square matrix satisfies its characteristic equation i.e. if A be the given square matrix of
order n then its characteristic equation is |A — AI| = 0.
fe. (D" +K AT KA KA+ L+ K A+ K, = 0. .(M))
then A will satisfy (M) i.e. (-1)* A"+ K; A" + K, A" + K3 A" + .. + K,I = 0 will hold good.
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We take adjoint of the matrix A — Al as P i.e. P = adj. |[A — AI|. Also, each element of P is a co-factor of
elements of |A — Al| so these co-factors are polynomials of degree (n — 1) or less in A.

So, can be split up into a number of matrices, which are co-efficients of the same power of A and
can be written as

P=P A"+ P, A" 2+ Ps A" + ...+ P, A+ P, ...(Mb)

where Py, P,, Ps,..., P, are all square matrices of order n, whose elements are functions of matrix A.

By matrix property it is known that if A is a square matrix then

A xadj. A = |A|xI, where I is unit matrix of same order as that of A.
[A—-AIl xP =|A-Alx1

So using (M) and (M) we may write it as
[A—-A x [Py A+ Py A2+ Ps A" + .+ Py A+ Py

=[(D)" A"+ K A"+ LA K A+ KT ...(M3)
From (M3), equating the co-efficients of powers of A, we get
(-DPi=(-1)"1, --(Ma)
AP, — P, =K1, ...(Ms)
APZ - P3 = KzI, .. (M6)
AP3 - P4 = K3I, .. (M7)
AP, - P, =Kol ...(Mp13)
and AP,=K,L ...(Mpa)
Next, pre-multiplying the equations (My4) by A", (Ms) by A,_1, .. and (My,43) by P and (M,14) by I, we get
—AnP1 = (—l)n An, (Rl)
A"P; - A™' P, =K; A" ...(Ry)
A"'P, — A"P; =K, A" ...(R3)
A’P, - AP, =K, | A .(Ry)
AP,=K,l ...(Rot1)
Now, adding them, we get
O=(-1)"A"+K; A"+ K,A" 2 + ... + Ky A + Ky .(X)

As left hand side terms cancel.
1.10.1 Inverse of a matrix using Cayley Hamilton theorem

To find the inverse of any matrix A, we multiply both sides of (X) by A" and get (-1)" A" + K,
A AT+ L+ K K AT =0

— Al=_ KL [(-1)" A4 K, A2+ K, A"+ Ki-1]

n

Example 1. Using Cayley — Hamilaton theorem, find the inverse of matrix
A= [5 3}.
3 2

Sol.  Let the characteristic equation be |A — Al =0
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ie. ‘S;X 2ik‘ =0
=  (5-0)2-1)-9=0 =  10+AM-7A-9=0
=3 A —TA+1=0 (D)
N I N il
3 2703 2 |21 13
Consider
A2 TA 4T _[34 21"_7 {5 3}{1 0}
|21 13] 3 2 0 1
_ [34—35+1 21-21 }z {0 o} Q)
21-21 13-14+1 00
Cayley Hamilton is satisfied. Now, multiplying both sides of (2) by A™', we get
A-T1+A™ =0
Alm T A= {7 0}[5 3}{7—5 —3}
0 7 3 2 -3 7-2
S
Hence, A —L=3 >
Example 2. Using Cayley-Hamilton theorem, find the inverse of the matrix
1 0 3
A=\2 1 -1|.
1 -1 1
Sol.  The characteristic equation of the matrix A is
I-» 0 3
|A — Al =0 e 2 1-» -1|=0

1 -1 1-X
This may be written as (1 — &) [(1 —A)* = 1] +3(-2+A—1]=0

A3 +FA-9 =0
ie. A =307 -A+9 =0 (1)
As (1) satisfied Cayley-Hamilton theorem, (given by question) we have

A’ —3A—A+9] =0 .2
Multiplying (2) by A", we get A’ —=3A —I+9A™' =0 ..(3)

So, we require

(1 0 3 1 0 3

AP=12 1 —1|x[2 1 -1

S N I S I

[1+0+3 0+0-3 3+0+3
=124+42-1 0+1+1 6-1-1
1-2+1 0-1-1 3+1+1
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4 -3 6
A’=|3 2 4
0 -2 5
(2) may be written as A~ = é [1+3A - A%

1 00
ie. A= 01 0|l+|6 3 —-3|-[3 2 4
00 1

3 -3 3 0 -2 5
0 3 3 0 1/3 1/3
3 2 =-7(=1/3 2/9 -=7/9
3 -1 -1 1/3 -1/9 -1/9

is the required inverse matrix of A.

1 2
Example 3. Verify Cayley-Hamilton theorem for the matrix, A = L J and then find A°,

Sol.  The characteristic equation is |A — AI| = 0.

ie. {1_7‘ 2}=o = M-1-4=0 = A2 =5,
2 —-1-A

Now, A’ =F Z}F 2}:[5 0}51
2 -1 2 -1 0 5

ie. A’=5L.

Hence Cayley-Hamilton theorem is satisfied.
Next, A*=5I=  A*=25I =

= A%=6251.

(AY? = (251)

Example 4. Find the characteristic equation of the matrix A =

— O N
—_—
[\ I eI

represented by A =547 =74° =34’ + A" =547 + 847 =24 + L.
Sol.  The characteristic equation of the matrix A is |A — AI| =0

2—A 1 1
i.e. 0 1-A 0 =0
1 1 2—A
= M- +70-3=0

Using Cayley-Hamilton theorem, we know that matrix A satisfied the eq. (1)
ie. A’ —5A°+T7A-31=0
Now, we consider the matrix

AP SAT+TA° - 3AT+ AT - 5AT+8AT - 2A +1
and arrange it to in such a manner that (2) is used to reduce (3) in simple form.
i.e. (3) may be arranged as

and hence find the matrix

(D

.(2)

..03)
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(A* = 5A7 + 7TA° = 3A%) + (A* = 5A  + TAT —3A) + A+ A +1
=AA’-5AT+TA-3D)+AA* - 5AT+TA -3+ A+ A+ 1

using (2)
5 4 4] (21 1]t oo
=A’+A+1=]0 1 0[+|0 1 0|+|0 1 O
4 4 5/ |11 2001
('8 5 5
=0 3 0
55 8

which is the required result.
[ 21 1 4+0+1 24141 2+40+2
Since A2=10 1 0[x|0 1 0]/=1]0+0+0 0+1+0 0+0+0
11 2

|11 2 2+04+2 1+1+2 1+0+4
(5 4 4
=10 1 0
4 4 5
1 3 7
Example 5. Find the characteristic equation of the matrix A = |4 2 3|. Show that the
1 2 1

characteristic equation is satisfied by A and hence obtain the inverse of the given matrix.
Sol.  The characteristic equation is |A — AI| = 0.

1-A 3 7
ie. 4 2-% 3 |=0 = A -4\ -20L-35=0 (1)
1 2 1-x
we have to show that A satisfies (1) i.e. A* — 4A% — 20A —351=0 (2
Consider
13 711 3 7
A’=AA= |4 2 3||4 2 3
1 2 1(|1 2 1

[1+12+7 3+6+14 7+9+7
=|4+8+3 12+4+6 28+6+3
_1+8+1 3+4+2 T7+6+1

[20 23 23
= A’= 115 22 37
10 9 14

20 23 231 1 3 7
AP=A2A=1[15 22 37| |4 2 3
10 9 14| |1 2 1
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[20+92+23 60+46+46 140+69+23
= |15+88+37 45+44+74 105+ 66+37
|10+36+14 30+18+28 70+27+14
(135 152 232
= 140 163 208
60 76 111
Now, we consider A* — 4A% — 20A — 351, which is
135 152 232 20 23 23 1 3 7 35 0 0
=140 163 208 |—4{15 22 37|—204 2 3|-10 35 O
60 76 111 10 9 14 1 2 1 0 0 35
[135-80-20-35 152 -92-60 232-92-140
= 140 — 60 — 80 163 -88—-40-35 208 -148-60
| 60-40-40 76 —36—20 -56-20-35
0 0 0
=10 0 0
00 0
Equation (2) is satisfied and A™' = % [A% — 4A — 20]]

20 23 23 1 3 7 20 0 O

ie. A= Llis 22 370-44 2 3|

0 20 O
35
10 9 14 1 21 0 20
. 20-4-20 23-12 23-28
5 15-16 23-8-20 37-12
10-14 9-8 14-4-20
(-4 11 -5]
ZL—l -6 25
35
6 1 —10]
(-4 11 -5]
1e. A_IZ% -1 -6 25 | isthe required result..
6 1 -10]

1.12 SUMMARY

In this unit we have learned about
e A matrix is said to be symmetric if A=A .

e A necessary and sufficient condition for a matrix to be skew symmetric is that A" =-A .

e Diagonal elements of a skew symmetric matrix are zero.

e A matrix is said to be Hermitian if A?=A .

e A necessary and sufficient condition for a matrix to be skew Hermitian is that A’=-A .
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Diagonal element for a skew Hermitian matrix are either zero or purely imaginary.

The rank of a matrix is the largest order of any non zero minor of the matrix.

The elementary operation is operation on any row/column like interchange of row/column,
multiplication of all element of row/column by a number, addition of any row or column. The rank
of a matrix is not changed when we apply elementary operation on a matrix.

Two matrices are said to be equivalent if one can be obtained from other by applying finite number
of elementary operation. Equivalent matrices have same rank.

A matrix is said to be row echelon matrix if the leading entry of each non zero row is unity, the
number of zero before the leading entry is less than the number of zero in the succeeding rows and
the non zero rows precede the zero rows. A row echelon matrix is said to be row reduced echelon
matrix if each column containing the leading entry of a row has all the other elements as zero.

I O
A matrix of order mxn and rank r is equivalent to the matrix [Or O} in the normal form.

The matrix obtained by applying a single elementary operation on identity matrix is called
elementary matrix.

The rank of the product of two matrices cannot exceed the rank of either matrix. The rank, row
rank and column rank are all equal.

If A is nxn matrix, then the matrix A-AI, for some scalar A is called characteristics matrix of A.
The determinant of the matrix A-Alis a non null polynomial of degree n in Aand is called
characteristics polynomial of matrix A.

The equation LA-/HJ =0, for some scalar A is called the characteristics equation of matrix A and

its roots , A, 4,,....,4, are called the characteristics roots of matrix A.

If Ais the characteristic root of an nxnmatrix A, then any solution of the equation AX=AX
except X=0 is called a characteristic vector of matrix A.
If A is non singular, then the eigen value of A™'is the reciprocal of the eigen value of A.
The eigen value of diagonal matrix is the diagonal elements of the matrix.
The eigen value of triangular matrix is the diagonal elements of the matrix.
If a is eigen value of a non singular matrix A, then |-— is an eigen value of adj. A.
a
The characteristic vectors corresponding to distinct characteristic roots of a matrix are linearly
independent.

The distinct roots of the characteristic equation ¢(1)=0of a matrix A are also the distinct roots of
the minimal equation m(A)=0 of the matrix A.

1.13 KEY TERMS
Symmetric matrix: A square matrix A = [a;;] is said to be symmetric if a;; = a;; for all 1 and j.
Skew Symmetric matrix: If a square matrix A has its elements such that a;; = —a;; for 1 and j and
the leading diagonal elements are zeros, then matrix A is known as skew matrix.
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e Hermitian Matrix: A square matrix A=[a;] over the complex numbers is said to be Hermitian if

the transposed conjugate of the matrix is equal to the matrix itselfi.e. A=A .
e Skew Hermitian Matrix: A square matrix A=[a;] over the complex numbers is said to be Skew

Hermitian if the transposed conjugate of the matrix is equal to the negative of matrix itself i.e.
A’=-A.

e Rank of a Matrix: A non zero matrix has rank r if every minor of order r+1 vanishes and it has at
least one non non zero minor off order r.

e Linear Dependence and Independence of row and column Matrices: The set of vectors
{V,,v,,.....v, }are said to be linearly dependent if there exist scalars a,,a,,.....a, not all zero such

if there exist scalars a,,a,,....a, suchthat a v, +a,v,+....4a v, =0 gives a,=a,=....=a_ =

1.14 QUESTION AND EXERCISE
1. Define inverse of a square matrix and show that inverse of a matrix is unique if it exists
2. Prove that square matrix A is invertible iff A is non singular.

2 1 3
3. Find the adjoint of the matrix |3 1 2 |and verify A(adj. A)=(adj.A)A= [A|L,.
1 2 3

—_— e N

1 1
4. Calculate the inverse of the matrix | 3 2 |if exists.
0 2

5. If A and B are square matrix of same order and a is non singular, then prove that LA’IBAJ = LBJ .

6. Solve the system of equation using matrix method

2x-3y+z=9 x+z=7
(1) x+y+z=6 (1) 2x+y=7
x-y+z=2 3x2y+z=17

7. If A is any square matrix, prove that A"A and AA" are both symmetric.
8. Prove that B" AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.
9. If A is skew symmetric matrix of order n, then show that adj. A is symmetric or skew symmetric
according as n is odd and even.

1 35
10. Express | -6 8 3| as the sum of symmetric and skew symmetric matrix.

4 6 5

11. Show all positive odd integral power of a skew symmetric matrix are skew symmetric while positive
even integral power are symmetric.
12. If A and B are Hermitian, show that AB +BA is Hermitian and AB is Hermitian iff AB = BA.
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] 11 -3 4 6
13. Find the rank of matrix [9 } .

1 20
I 1 1
14. Find the rank of matrix A= a b c |, a, b, c being real.
a’ b ¢
15. If A is a square matrix of rank n -1, show that adj. A #O.
0 2 3 4
16. Reduce the following matrix to normal form |2 3 5 4].
4 8 13 2
1 -1 2 -1
17. Reduce the matrix A=|4 2 -1 2|to[L, O]. Hence find p(A).
2 2 20
1 3 3
18. Express A=|1 4 3 |as product of elementary matrices.
1 3 4

19. For the given matrix A, find non singular matrix P and Q such that PAQ is in normal form and hence
determine the rank of A.

1 1 1
A=(1 -1 -1].
31 1
20. Prove that the set of vector (0, 2, -4), (1,-2,-1), (1,-4, 3) is linearly dependent.
1 1] [1
21. Find p if the vectors | -1 |, | 2 |,| O | are linearly dependent.
3 31
22. Verify Cayley Hamilton theorem for the given matrix and also find A™ also:
2 1 2]
A=l5 3 3
-1 0 -2
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2.0 INTRODUCTION

In this chapter we will use these concepts to study the solutions of systems of linear equations. Here, we
will concentrate on the solution of system of homogeneous as well as non-homogeneous linear
equations. We also learn orthogonal and unitary matrices.

2.1 OBJECTIVES
After going through this unit you will be able to:

e Determine whether the system of non homogeneous and homogeneous linear equation is consistent

or inconsistent..

e Solve non homogeneous and homogeneous system of linear equations.

2.2 LINEAR SYSTEM OF EQUATIONS

2.2.1 System of Non Homogeneous Linear Equation

If
apnxitapxt...tanx=>b
ax;tapnxt ... tanx,=b

..................................... ..(1)

Ami X1t amp X2 + ... + Qmn X0 = by
be given system of m linear equations then (1) may be written as

a;, 4, .. a; ||x b,
Ay Ay e 8y, || Xy b,
_aml amZ amn_ _Xl‘l_ _bm_
a;  ap ap, by
ay Ay ay, :b,
= AX =B and C=[A:B]=
a a a_ b
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then [A : B] or C is called augmented matrix. Sometime we also write A : B for [A : B]
Consistent Equations.
(1) If rank of A = rank of [A : B] and there is unique solution when rank of A=rank of [A : B]=n
(i1) rank of A =rank of [A: B] =r<n.
Inconsistent Equations.
If rank of A # rank of [A : B] i.e. have no solution.
Example 1. Discuss the consistency of the following system of equation
2x+3y+4z=11, x+5y+7z=15, 3x+ 11y + 137 =25, if consistent, solve.

2 3 4:11
Sol.  The augmented matrix [A:B]= 1|1 5 7:15
3 11 13:25
1 5 7:15
Rj; operationis doneso~ |2 3 4:11
3 11 13:25

Next operating R, - R, — 2R and R; — R3 — 3R, we get
1 5 7:15

~10 -7 -10:-19
0 -4 -8:-20

Again, operating R, — —% Rrand R; — —% R3, we get

1 5 7:15 |
7
01 2:5 |

Next operating R3 — R3 —R,, we get

1 5 7:15
o ) 100
7 7
0 0 i&
L 7 7 |
x+5y+7z=15
10 19
:> +—7=— ...M
y+—z=- M)
4 16
—7 =—
7 7

From which we get rank of A = 3 as well as rank of A : B = 3. Hence the system of equations is
consistent and has unique solution gz = % =z=4

10 19 10 19 21
Y 7 7 Y 7 7 Y 7

And from (M), we have x + Sy + 7z=15=>x=2
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i.e. we have the solution x =2, y =-3 and z = 4, which is the required result.

Example 2. Test the following equations for consistency and hence solve these equations 2x —
3y+7z=5, 3x+y—37=13 and 2x + 19y—477 = 32.

Sol.  The above equations may be written as AX = B.
2 -3 7 |[x 5

31 =3 1|x,|=|13

12 19 —-47][x, 32
Operating R, — 2R, — 3R and R3 — R3 — Ry, we get
2 -3 7 [x] [5]
0 11 =27||x,|=|11
0 +22 —54]|xy| |27
Next, we operate R3 - R3 — 2R,
2 -3 7 ][x, 5
0 11 =27||x,|=|11
0 +22 —54||x;| |27

This indicate the rank of A =2 which is less than 3 (the number of variables) i.e.

p(A)=2<3

So, the given equations are not consistent and so infinite number of solutions can be obtained.

Example 3. Show that if A # -5, the system of equation 3x —y + 47 =3, x + 2y — 3z = -2 and
6x + 5y + Az = =3 have a unique solution. If A = -5, show that the equations are consistent.
Determine the solution, in each case.

Sol.  The given equations are

3x-y+4z=3,
x+2y—-3z=-2 ..(D)
and 6x+5y+Aiz=-3
3 -1 4 X 3
IfA=|1 2 -3|, X=|y| and B= |-2] such that AX =B from (1)
6 5 A z -3
3 -1 4:3
Then augmented matrix A: B= |1 2 -3:-2
6 5 A3
Operating Rj;(i.e. interchanging R; and R»)
1 2 -3:-2
A:B=1|3 -1 4:3
6 5 A:3

Now operating R, — 3R [i.e. R;, 1(—=3)] and R3, 1(-6) i.e. R3 — 6R;, we get
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1 2 3 :-2
A:B~|0 -7 13:9
0 -7 A+18:9

Next, R3 — Ry[(i.e. R3, 2(-1)], we get

(1 2 =3:=2
~10 =7 13:9 ...(2)
10 0 A+5:0

If A =— 5, then rank of A becomes p(A) = 2 which is less than 3, (the number of unknowns) and hence
the equations will be consistent and will have infinite number of solutions

Next, operating, Ry + %R, we get

1 0 5:;
~ 10 —=7 13:9 | from this matrix, if A # -5
0 0 A+5:0

then rank is 3 and the equation will be consistent and we get
x+§z=§;—Jy+Bz=9mﬁ(k+$z=0L&z=0

= -Ty=9= y=—2 andx+0=i '.e.x=i.
7 7 7

1.e. unique solution is x = rt y= —%, z =0, which is required result.

If A = -5, then from (2), we have x + 2y -3z =-2, -7y + 132=9 ...(3)
If we take z = k than from (3),
3k+2(13k_9j—2
13k -9 4 -5k
= —— and z= -
7 3 7

Example 4. Examine whether the following equations are consistent and solve them if they are
consistent 2x+ 6y +11 =10, 6x+ 20y —6z+ 3 =0and
6y —18z+1=0.
Sol.  The above equations may be written in the form
2 6 0 ||x -11
AX =B whichis |6 20 -6 |y|=|-3 ..(1)
0 6 -18||z -1

Now the augmented matrix may be written as

2 6 0 : -1l
A:B=|6 20 -6 : -3 .2
0 6 -18 : -1

Operating R, — R, — 3R, we get
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26 0 : -11
A:B~|0 2 -6 : 30
0 6 —18 : -1
Now, operating R3 - R3 — 3R,, we get
2 6 0 : 11
~10 2 -6 : 30
00 0 : -91

Hence rank of A = p(A) =2 and p(A : B) =3. So, p(A) =2 < 3 (number of variables). This indicated
that given equation are in consistent and so it has no unique solution.

Example 5. Solve the following system of equations by matrix method x +y +z=8, x—-y+2z=6
and 3x + 5y — 77 = 14.

Sol.  The above equations written in the form AX = B.

1 1 1 X 8
where A=1|1 -1 2 |, X=|y|and B=|6
3 5 -7 z 14

So, we may write augmented matrix as
1 1 I : 8
A:B=|[1 -1 2 : 6 ..(D
35 -7 : 14
Operating R, - Ry — R; and R3 — R3 — 3R, we have
11 1 : 8
A:B~ |0 -2 1 : -2 ..(2)
0 2 10 : 10

Again R; — R; + Ry, we have
11 1 8

~ 10 -2 1 : =2
0 0 -9 : -12
this implies that
xty+z=28
2ytz=-2 ...(3)
and -9z =-12
= Z=i and2y=z+2=i+2= 10 y=§
3 3 3 3
Using 1* equation of (3), we getx +y +z =8
- w2+ 2 =g ~  x=8-3=5
3 3

From (2) we see that p(A) = number of variables so, the system of equations are consistent and

3 =
solutions are x =5,y = %, z=g.
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Example 6. Determine for what values of A and u the following equations have (i) no solution ii) a
unique solution (iii) infinite number of solution : x+y+z=6, x+2y+37=10 andx+2y+Az=pu
Sol. The above equations may be written in the form AX = B.

I 1 1}(|x 6
ie. 1 2 3||lyl=|10

1 2 Al|z u

1 1 1 6
The augmented matrix [A: B]=|1 2 3 10
1 2 A il

Operating R, — R, — R; and R3 —> R3 — Ry, we get
11 1 : 6

~10 1 2 4

10 1 A-1 : p-6
Again operating R3 — R,, we get

[ S S

~ 10 1 2 : 4

0 0 A=3 : p-10

>wegetxty+z=6, y+2z=4and (A —-3)z=pn - 10.
(1) If R(A) # R[A : B]i.e. if A —3=0and p— 10 # 0, then rank of A # rank of [A : B]. Since p(A)
=2 and p(A : B) = 3. The equation have no solution.
(11) The equations have unique solution if rank of A =rank of [A : B] =3,1.c.ifA-3#0and n—-3
#0.
(1) Ifp(A)=p(A:B)=21e.whenA—-3=0and p—10=01i.e. when A =3 and pn=10.
Then these are infinite number of solution.
2.2.2 System of Homogeneous Linear Equations
If
appxytapxt+...
B x;tapxt+...

..................................... .(1)

Ami X1 tam X2 T ... tam Xn =
be given system of m linear equations then (1) may be written as AX=0

a4y Ay || N 0
a21 a22 a2n ’x2 O
_aml am2 amn_ _‘xn_ _0_

Here A is called the coefficient matrix and the given system of equations AX=0 1is called linear
homogeneous system of equations.
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Working rule for determining solution of m homogeneous equations in n variables.
Firstly we find the rank of coefficient matrix A. Then
1. There is only a trivial solution which is x,=x,=....=x,=0if p(A)=n.
2. A can be reduced to a matrix which has (n-r) zero rows and r non zero rows and if p(A) <nso the
system is consistent and has infinite number of solutions.
Thus, the given system of equations has a non- trivial solution iff |A| =0
Example 1: Solve the following system of equations
Xx-y+tz=0
Xx+2y-z=0
2x+y+3z=0
Solution. Writing the given equations in the matrix form, we have
I -1 1{«x 0
I 2 -1{ly|=|0
2 1 3|z 0

1 -1 1
or AX=0, where A=|1 2 -1
2 1 3
Operating R, - R,+(-R,) and R; - R, +(-2)R,

1 -1 1
A~|0 3 -2
0 3 1

I -1 1

Operating R; - R;+(-R,), A~|0 3 -2

0 0 3

Operating R, - R, x (%) and R, > R, x (%)

1 -1 1
A~|0 3 -2/3
0 0 1

. p(A)=3 = number of variables and hence the given system of equations has only trivial solution, x =
y=z=0.

Example: Solve the following system of equations:

X-y+2z-3w=0

3x+2y-4z+w=0

4x -2y + 9w =0

Solution: Writing the given equations in the matrix form, we have
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b a2 a0
32 4 1|72
4 20 ol |°
w 0
1 -1 2 -3
or AX=0,where A=|{3 2 -4 1
4 2 0 9
Operating R, > R,-3R, and R, > R;-4R,
1 -1 2 3
A~|0 5 -10 10
0 2 -8 21
Operating R, - R, (%j,
1 -1 2 -3
A~|0 1 -2 2
10 2 -8 21]
Operating R; - R;-2R,,
1 -1 2 -3]
A~|0 1 2 2
0 0 -4 17

- p(A)=3, Here n = 4 (the number of unknowns)
Now p(A)<4. Thus the system of equations has infinite solutions. The solutions will contain 4 — 3=1

arbitrary constant.
Equation corresponding to the matrix are

x-y+2z-3w=0 (1)

y-2z+2w=0 2)

-4z+17w=0 3)
From (3), ZZ%W

From (2), y-%w+2w:0 = yzgw

From (1), x-§w+177w—3w:0 = x=w

Putting w =k, we getx =k, y Z%k, z Z%k , which is the general solution, where k is an arbitrary

parameter.
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Check Your Progress
1. Solve the following system of liear equation
x—y+z=0
x+2y-z=0
2x+y+3z=0

Ans.x=y=z=0.

2. Find the values of a and b for which the following system of linear equations
2x+by—z=3

Sx+T7y+z=T7.

ax+y+3z=a

Ans.a=1andb=3.

2.3. Orthogonal and Unitary matrices

2.3.1 Orthogonal Matrix

Any square matrix A is said to be orthogonal if AA~A A=I, this indicates that the row vectors (column
vectors) of an orthogonal matrix A are mutually orthogonal unit vectors.

2.3.2 Unitary Matrix

Any square A with complex elements is said to be unitary if A.A°=AA=I.

2.4 SUMMARY
e The matrix A and B together form a matrix [A4: B]termed as augmented matrix which is denoted as
a;  ap ay, :b
[A:B]= a4y Ay ay, :b,
a,, a,, b,

e The system of linear equation AX = Bis consistent if the coefficient matrix A and the augmented
matrix [ 4 : B]have the same rank i.e. p(4) = p[4: B].
e If A is a non singular square matrix of order n and X,B are matrices of order (nx1), then the system
AX = Bpossesses a unique solution.
2.5 KEY TERMS
e System of Non Homogeneous Linear Equation:
Consistent Equations.
(1) If rank of A =rank of [A : B] and there is
unique solution when rank of A =rank of [A : B]=n
(1) rank of A =rank of [A: B]=r<n.
Inconsistent Equations.
If rank of A # rank of [A : B] i.e. have no solution.
e System of Homogeneous Linear Equations:
Firstly we find the rank of coefficient matrix A. Then
1. There is only a trivial solution which is x,=x,=.....=x,=01if p(A) =n.
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2. A can be reduced to a matrix which has (n-r) zero rows and r non zero rows and if p(A) <nso
the system is consistent and has infinite number of solutions.
Thus, the given system of equations has a non- trivial solution iff |A| =0.
2.6 QUESTION AND EXERCISE
1. Solve the system of linear equation:
Ax+2y-27=1
4x+2Ay-z=2 , considering special the case when 4 =2.
6x+6y+Az=3
2. Show that the only real value of A for which the equations
x+2y+3z=4Ax
3x+y+2z=Ay , have a non zero solution is 6.
2x+3y+z=Az
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3.0 INTRODUCTION

In this unit, we will learn synthetic division . We will also find the relation between the roots and the co-
efficient of an equation. In this unit we will transform equations in another equations whose roots are
related. Transformation of an equation into another is a very useful as we can connect the roots of the
new equation with that of the given equation or convert the co-efficient of the new equation in particular
forms. Also the transformed equation may be easier to solve and having solved the transformed equation
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we can find out the roots of the given equation with the help of the relation between the roots of the
given equation and the transformed equation.
3.1 UNIT OBJECTIVES
After going through this unit, you will be able to:
Know about polynomials and their co-efficient, terms and value.
Know about degree and roots of complete and incomplete equations.
Learn synthetic division.
Find the relation between the roots and co-efficient of an equation.
Find a condition so that the roots of a given equation satisfy a given relation and the common
roots of two equations.
Find multiple roots of an equation and the common roots of two equations.
Transform an equation into another having roots with sigh.

YV V VY

YV YV V

Changed, roots multiplied by a number, roots as the reciprocal of the roots of the given
equation.
Remove the fractional co-efficient removed of the given equation.
Diminish the roots of an equation by a given number.
Remove particular terms of the given equation .
To find an equation having roots as squared differences of the roots of the equation x°.
To find an equation having roots as squared differences of the roots of the equation.
3.2 POLYNOMIAL

. . -1
An expression in x of the form ayx"+ax" +..+a, where q,,a,,...,a are constants known as the

YV V VY

coefficients and x is a variable. We shall denote a polynomial by f(x)or g(x) etc. A polynomial
f(x)=ax" +ax"" +..+a,is said to be of degree n when a, #0.

> If all the coefficients q,,q,,..,a, in f(x) are real then polynomial is said to be real

n

polynomial.

> If all the coefficients q,,q,,..,a, in f(x) are zero then polynomial is said to be zero

polynomial.

> If we substitute x=a in f(x) then the number f(a) is called value of the polynomial f(x)
for x=a.

> The number x=a is called zero of the polynomial f(x) ifandonlyif f(a)=0.

> The highest index of variable x occurring in the terms of polynomial f(x)
is called degree of f(x).
Example: The polynomial f(x)=5+7x"+3x" is of degree three.

3.2.1 Division Algorithm
If f(x) and g(x) are two nonzero polynomial, then there exist unique polynomial ¢(x) and

that f(x)=q(x).g(x)+r(x), where r(x)is either a zero polynomial or degree of r(x)< degree of g(x).
Where ¢(x)is called quotient and r(x)is called remainder when f(x) is divided by g(x).
> Degree of r(x)= degree of f(x)- degree of g(x).

> If degree of g(x)=1 then, either »(x)=0 or degree of r(x)is zero means a constants polynomial.
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2.2.2 Remainder Theorem
Theorem 2.1: If a polynomial f(x) is divided by x-a, then the remainder is equal to f(a).

Proof: Let g(x) be quotient and R be the remainder then using division algorithm for polynomial
f(x) and x-a, we have
f(x)=gq(x)(x-a)+R
By putting x=a, we get
f(a)=q(a)a—a)+ R = R = f(a)=Remainder
Example 1: Find the remainder when polynomial 2x* —x’ —6x* +4x -8 is divided by x+2.
Sol: f(x)=2x"-x"—6x"+4x-8
Comparing x+2 with x-h, we get h=-2

.. Now Remainder R= f'(h)= f(-2) [ h=-2]
=2(-2)* = (=2)’ = 6(=2)" +4(-2) -8
=32+8-24-8-8=0

Thus remainder is zero.
Note: When Remainder R=0, we say that f(x)is exactly divisible by x+2.
2.2.3 Factor Theorem
Theorem 2.2: If h is a root of the equation f(x)=0, then (x-h) is a factor of f(x) and conversely.
Proof: Using Division algorithm for f(x) and (x-h), we have
f (x)=q(x)(x-h)+R (1)
where q(x) is quotient and R is remainder.
Now as h is a root of equation f(x) =0 = f(h)=0 2)
from (1), we have
f(h)= q(h)(h-h)+R
f(h)=R, but from (2)
R=0, using in (1), we have
f(x)=q(x)(x-h) , this imply (x-h) is factor of f(x).
Converse: Do yourself.
3.3 GENERAL EQUATION
If f(x) is a polynomial then f(x)=0 is called general equation.

3.3.1 Degree of an Equation:
The degree of an equation f(x)=0is highest index of variable x occurring in the terms of polynomial

equation f(x)=0. The polynomial equation of 1% degree, 2™ degree, 3" degree, 4™ degree, are
respectively known as Linear, Quadratic, Cubic, biquadratic Equation.

3.3.2 Complete and Incomplete Equations
A General Equation of degree n is said to be complete if it contains all power of the variable x from 0 to

n. For example a,x’ +a,x’ —a,x+a, =0 is complete equation of third degree.
If any of the powers of the variable are missing from an equation of degree n is called incomplete
equations. For example a,x’ +a,x” +a, =0 is incomplete equation of third degree. [ - The Term —a,x

is missing. |
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3.3.3 Root of an Equation
The value of x for which f(x) vanishes is called root of equation f(x)=0.For example if f(4) =0, then

h is called root of the equation f(x)=0.

3.4 SYNTHETIC DIVISION
It is a rule of coefficient detached with the help of which we can find quickly the quotient and the
remainder when a polynomial f(x) is divided by a polynomial of the form x-a or ax+b (a#0)
The rule is explained with help of a example:
Let 3x* —5x’ +10x* +11x—61 is divided by x-3
(a) In the first line write down in descending order the co-efficient 3, -5, 10, 11 and -61 of given
equation (coefficient of missing terms are to be written as Zeros).
(b) Put the divisor (x-3) =0 and find the value of x i.e., x=3, which is called multiplier and may be
written at the left hand corner separated by a vertical line .

3 3 -5 10 11 -61
9 12 66 231

| 3 4 22 77 170=Remainder

Hence the remainder=170 and the quotient is 3x’ +4x* +22x+77.
3.4.1 To find the Quotient and Remainder, when f(x) is divided by (ax-5).

.. ) b
The divisor can be written as a (x ——j
a

Divide f(x) by(x—éj , let g(x) be the quotient and R the remainder.
a

(ax-b)

+R= l.q(x)(ax -b)+R
a

f(x)=q<x>.(x—§j+R - ().

This shows that when f(x) is divided by (ax—b) instead of (x—ﬁj, the remainder R remain
a

13 2

unchanged, whereas the quotient g(x)is to be divided by “a ” the coefficient of x in the divisor (ax—b).

Example 2: Find the quotient and remainder, when 2x* —5x” +11x—7 is divided by (2x—3).

Sol. The divisor (2x—3) can be written as 2 [x —%)
.. 3
We first divide by(x —Ej .

Put x—% =0 .. x :% is a multiplier.

Write down the co-efficient of the given polynomial in descending order and write down zero
coefficient in place of missing terms i.e.,
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i 2 0 -5 11 -7
2
s 0 3 s
2 4 8
e
2 4 8

This gives the remainder and quotient when f(x) is divided by(x —%j .
Therefore, the remainder and quotient when f'(x) is divided by (2x-3).

Required Remainder= 6?7 [Remainder remain same]

. . 1
Required quotient= 5 q(x)

Problems to Check Your Progress
1. Using synthetic division find out f(2) , where f(x)=x"-12x>+40x—-71.

2. Given that -4 is a root of the equation 2x’ + 6x” +7x+60 =0, find the other roots.

3.5 RELATION BETWEEN THE ROOT AND COEFFICIENT OF AN EQUATION.

Let the given equation be
f)=ax"+ax"" +ax" +...+a,_x+a,=0
Let o, a,,a;,....,a, be its n roots.
S =a)(x-a)(x-a,)..(x-a,).
Now equating the two expressions for the polynomial f(x), we have

ax" +ax"" +ax" +...ta, x+a,=a,(x—a)(x-a,)..(x—a,).

=a, [x” - Z ax"" + Z ao,x" - Za,alazx""l +ot (—1)"0{,(11052..05"} .. (D)
where, Z a, = the sum of all the roots.
Zalaz = the sum of product of the roots taken two at a time.

Z a,a,0, = the sum of the products of the roots taken three at a time.

Equating the co-efficient of like powers of x on both sides of (1), we get

_ _ 9.
—a, Y oy =a, =) a,=——

a

a
_aozalaz =a, = Zalaz = (_1)2 -

9
ay
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—aOZ(xlazaB =a, = Zalaz% =(-1)—=;

Thus, above results gives the required relations between the roots and coefficients of the equation
f(x)=0.
. coeff. of T,

Sum of the products of roots taken r at a time is Zalaz%...ar =(-1
coeff. of T,

Particular Case:
(1) If o, B are roots of the equation

ax’ +bx+c =0, then a+ﬂ:—2 and af =<
a a
(i) If e, f and y are roots of the equation

ax’ +bx* +cx+d =0, then a+,8+7/:—2
a

ap+ Pyt ra =17 S, apy =1y <
(i) If «, B,y and O are roots of the equation

ax* +bx’ +ex’ +dx+e=0, then a+,8+;/+5=—2
a

af+ By +y5+a=12<, afy + Brs + yda = (-1)° 4 and afys =(-1)* <.
a a a

3.5.1 Solution of Polynomial Equation having Condition on the Roots
We can solve given polynomial equation with the help of relations Z a, z aa,....., where a; denotes
the roots of given equation.

In case of cubic equation:
(1) If the roots are given in A.P. can be taken as o — f,a,a + f .

(i1) If the roots are given in G.P. can be taken as %,a,aﬁ .

In case of bi-quadratic equation:
(1) If the roots are given in A.P. can be taken asa —38,a— f,a+ f,a+30 .

(11) If the roots are given in G.P. can be taken as %,%,aﬁ, ap’.

Example 3: Solve the equation 4x° +16x* —9x —36 =0, the sum of two of the roots being zero.

Solution: The given equation is 4x” +16x> —9x—36=0
Let the roots be «, 5,7 suchthat a+ =0

Now a+,b’+;/:—?:—4
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Since a+p=0 = y=-+4
Thus one root of equation is -4 and hence x + 4 is a factor of given equation
Dividing the given equation by x + 4, we have

N | W

Depressed equationis 4x° -9=0 = x’= % =>x=4

3
Hence the roots are -4, iE .

Check Your Progress

1. Solve the equation x* —12x” +39x — 28 = 0 the roots being in A.P.
Ans. Roots are 1, 4, 7.

2. Solve the equation 3x’ —26x” +52x—24 =0, the roots being in G.P.

Ans. Roots are %, 2,6.

3.5.2 To find the condition that roots of given equation satisfy a given relation.

Example 4: Find the condition that one root of the equation px’ + gx’ +rx +s = 0 be equal to the sum
of the other two.

Solution: The given equation is px’ +¢gx* +rx+s =0 (1)

Let the roots of the equation be «, ,7 suchthat a = f+y

From(l),a+ﬂ+y:—i = g+a=-L g=-1L
p 2p
But & = ——L is a root of (1)
2p
3 2
q q q
—— | +q|——| +r|— |+5=0
p[ 219) q( 2pj ( 2Pj
or —q’ +2¢° —4pgr+8p°s =0

or g —4pgr+8p°s=0

which is the required condition.
3.5.3 Common Roots of Two Equations

Let f (x)=0 and f, (x)=0 be two equations of degree n and m respectively.

Let a,,a,,a,,....,a, (r <n,r <m) be their common roots.

Then both f (x)=0 and f (x)=0are divisible by ¢(x)=(x-)(x-a,)... x—a,)which is,
therefore, the H.C.F of f (x) and f (x).

Hence the common roots of the two equations such as f,(x)=0and f, (x)=0are given byp(x)=0,

where ¢(x) is HC.F.of f (x) and f (x).
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3.5.4 Equal or Multiple Roots of an Equation

A root « is said to be multiple root or repeated root of an equation f(x)=0 if & occurs more than
once in the roots of the equation f(x)=0. If «is repeated m-times then « will be roots of f*(x)=0

repeated m-1 times, where f*(x)=0is differential of f(x)=0 with respect to x.

Rules to find multiple roots of an equation:
To find the multiple root of an equation f(x)=0:

(1) Find f'(x)

(i))  Findthe HC.F of f(x) and f'(x).Letitbe ¢(x).

(i)  Put ¢(x)=0 and solve it.

(iv) Ifaroot a of equation ¢(x)=0 is repeated r times, then the same root « will be repeated r+1
times in the equation f(x)=0.

Cor. 1. If « is double root of the equation f(x)=0, then we have f(a)=0and f'(a)=0. The
required condition will be obtained by eliminating « from the equation f(a)=0and f‘(a)=0.
Cor.2. If « is triple root of the equation f(x)=0, then we have f(a)=0, f'(a)=0and

f"(a)=0. The required condition will be obtained by eliminating « from the equation f(«)=0,
f(x¢)=0and f“(x)=0.

Check Your Progress

1. Solve the equation 3x’ —19x” +33x -9 = 0 which has repeated roots.

Ans3,3, L
3

2. Solve the equation x° —15x’ +10x” +60x —72 = 0 by testing for equal roots.
Ans. 2,2,2,-3 and -3.
3.6 TRANSFORMATION OF EQUATIONS
To transform an equation into another whose root shall be equal in magnitude but opposite in sign to
those of the given equation.

Let o, a,,a;...... ,a, be the root of the equation
f(x)=ax"+ax"" +ax" 7’ +..+a,_x+a, =0 (1)
We will find out an equation whose roots are —a,, —a,,—0;...... ,—Q,.

If the new equation is in y then the functional relation between the roots of the equation is,
y=-X Of X=-y
Putting the value of x in (1), we get f(—y)=0

ay(=y)" +a,(=y)" +a(~y)" +..ta, (-y)+a, =0
a,(=1)"y" +a,(-1)""y" " +a,(-1)"*y"? +...+a,_ (-1)y+a, =0
Since n can be even as well as odd, we cannot conclude regarding the sign of (=1)", (=1)"" etc.

So multiplying throughout by (—1)", we have
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ay(=1)"y" +a, (-1 y" " +a, (1) y" P +ta, (1) y+a,(-1)" =0
But (-D)* =1

D" =D (=D) T =1

(1" = (1 = = (=)

Thus the required equation is

ay" —ay"" +a,y" " +.+a, (-1)"" y+a,(-1)" =0
Expressing the equation in term of variable x, we get
+ax" 7 +.ta, (1) x+a,(-1)" =0

n-1

ax" —ax
Which is the required transformed equation.

3.6.1 Root Multiplied by a Given Number:
To transform an equation into another whose roots are m times those of the given equation.

Leta, ,a,,a,...... ,a, be the roots of the given equation

n—1

fx)=ax"+ax"" +a,x"* +..+a,_x+a, =0

It 1s required to find out an equation whose roots are m times the roots of one (1) i.e., we require an
equation whose roots are ma, , ma.,, ma,...... ,ma._ .
If the new equation is in y, then the functional relation between the roots of the two equation is

y = mx or x=2

m
Putting this value of x in (1), we get

f (lj -0
m
n n—1 n—-2
Le., a, [lj +a, (lj +a, (lj +ota, (lj +a,=0
m m m m

Multiplying throughout by m" , we get

ay" +ay" +a,y"  +...+a,_y+a, =

Expressing it in x, we have

ax"+ax"" +a,x"? +...+a,_x+a, =0

Which is the required transformed equation.

Note: 1. In order to form an equation whose roots are m times the roots of the given equation, multiply

the successive coefficients beginning with the coefficient of x"”' by m, m®, m’...., m" .respectively. If
any power of x is missing it should be regarded as supplied with a zero coefficient.

2. If'the roots of the given equation are to be divided by m, it means they are to be multiplied byi.
m

3.6.2 Reciprocal Roots
We will transform an equation whose roots are reciprocal of the roots of the given equation.
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Consider an equation f(x)=a,x" +ax"" +a,x" " +...+a,_x+a, =0 (1)
Leta, ,a,,a,...... ,a be the roots of the given equation. We will find out an equation whose roots are
1 1 1 1

. . . 1. . .
Let us suppose that the new equation formed will be in y. Then Y or x==1is the functional relation
X y
between the roots of the two equations.

By putting this value of x in (1), we get

n n—1 n-2
f(l)=a0 [lJ +a, (lj +a, [1] +...+a,, (lj+an =0
y y y y y

Multiplying throughout by ", we get

n-1

ay+ay+a,y’ +..+a,_y"" +ay =0
Expressing it in x, we have
a,+ax+a,x’ +..+a,_x""+ax"=0

Example 5: Find an equation whose roots are equal in magnitude but opposite in sign to the equation
X +11x* +7x° —16x" —12x+15=0.

Solution: We know that when we change x to —x, the signs of the coefficients of terms with odd powers

of x change.
Thus, the required equation is —x° +11x* =7x’ —=16x* +12x+15=0
or X =11x* +7x +16x* —=12x-15=0

Example 6: Find an equation whose roots are four times the roots of the equation x° ++2x> +3x—5=0

Solution. The given equation is x* +2x* +3x-5=0_

Since the given equation is complete, therefore, multiplying the successive terms by 4°,4',4% 4°
respectively, we have
4% +4'2x° +4°3x-45=0
or x +8x° +48x—320=0.
Which is the required equation.

Example 7: Remove the fractional coefficients from the equation

x* +lx3 —gx2 +2x—1 =0
2 3 3

Solution. To remove the fractional coefficients, we multiply the roots of equation (1) by 6 which is the
L.C.M of 2 and 3, the denominator of the fractional coefficients, which are prime to each other.

Thus, the transformed equation is  x* + 6.%x3 - 62§x2 16 2x—6%1=0

or x*+3x" —60x" +144x-1296 =0 .
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Example 8: Transform the equation into one whose roots are twice the reciprocals of the roots of the
equation x* +3x’ —6x* +2x—-4=0

Solution. The given equation is x* +3x’ —6x> +2x—-4=0

Replacing x byg , we get
X

SEGRGREORS

X X X X

or 16 +24x—24x" +4x° —4x* =0

or xt—x+6x*—6x-4=0

Which is the required equation.

Example 9: Find the condition that the roots of the cubic x° — px* + gx — 7 = Omay be in H.P . Hence or
otherwise solve the equation 6x° —11x* +6x—-1=0

Solution. (i) The given equation is x° — px* +gx—r =0

It is given that its roots are in H.P.

1 3 2
Changing x to — in (1), we get (lj —p(l] +q(l)—r =0
y Y Y

Y
i.e. 1y’ —qy’ +py—-1=0
Clearly the roots of (2) are in A.P. Let the roots of (20 be a—d, a, a +d.
Then sum of the roots = 3a=% = ¢ = L
r 3r

= = i is one root of (2)

q q
= L1 gl L+ 1=0

(3 j ( j P (3rj

or q _q_ +24 - =0i.e., q’-3q’+9pqr-27r>=0

27r* 9 3r
. Required condition is 2q°- 9pqr + 27r*=0

The given equation is 6x° —11x* +6x—1=0

Dividing by 6, we get x’ —%xz +x—% =0

Comparing (1) and (3), we get p :%, g=1land r=6

L.H.S of (3)= 2¢" -9 pgqr+27r’

- o{tofioo(d)

This shows that equation (1) and (4) satisfy the same conditions.
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1 1

—=—=— 1is one root of equation (4)
y q 2

x—% is a factor of L.H.S. of (4).

By synthetic division,

6 -8 2 0
Depressed equation is 6x° —8x+2=0

ie. 3x* —4x+1=0

or (3x—1)(x—1)=0:>x:%,1
11

Hence the roots of (1) are 1,5 3

Check Your Progress
1. Remove the fractional coefficient from the equation x* + %x3 —Ex2 + gx -1=0

Ans. x' —24x* +65x-55=0.

2. Solve the equation 40x* —22x° —21x* +2x+1=0 if the roots are in H.P.
Ans. —l,—l,l,l .
5 2 4
3.6.3 Root Diminished by a Given Number:
We will transform an equation in to another equation whose roots will be the roots of the given equation
diminished by h.
2

Consider an equation f(x)=a,x" +ax"" +a,x" > +...+a,_x+a, =0 (1)

n—1
Leta,,a,,a;...... ,a, be the roots of the given equation. We will find out an equation whose roots are

a,—h,a,—h,o,—h,...... ,a —h.

Let the new equation formed will be in y. Then y= x- h or x =y + h is the functional relation between
the roots of two equations.
By putting the value of x in (i), we get

fO+h=a,(y+h)"+a(y+h)"" +a,(y+h)* +..+a,_ (y+h)+a, =0
Simplifying and arranging in descending power of y, we get

A" +A YT HAY T+ A y+A, =0

Where A, A,,....., A, are constants to be determined. ... (ii) Putting y =x —h in (ii)
L f)=A(x=h) + A (x=h)"" + A (x=h)" +.+ A, (x—h)+A, =0

L.H.S of this equation is identical with the L.H.S. of equation (1).



Algebra, Calculus & Solid Geometry 65

This shows that if f(x) is divided by (x-h), then the remainder is A, and the quotient is
Ay(x=h)""+ A (x=h)+A,(x—h)"" +..+A,, =0

If we divide this quotient by (x-h), then we get A, as the remainder and the second quotient is
Ay(x=h)"+A (x=h)"" +A,(x=h)" +..+A, _,=0

Repeating this process n time, the nth remainder will be A, and the nth quotient will be A

By equating the coefficients of x"in (i) and (iii), we get A, =q,.

Thus, the division of f(x) successively by (x-h) we getA, ,A , A, A, as the successive remainders

el 30eeee

and A,(=a,) as the last quotient. Then the transformed equation in X is
A" +AX"T +AX TP+ +A x+A =0,

2.6.4 Removal of terms in General

We will remove a particular term from the transformed equation by decreasing the roots of the given
equation by a suitable number.

Consider an equation f(x)=a,x" +ax"" +a,x" " +...+a,_x+a,=0..... (1)

Suppose the roots of the equation (i) are diminished by h.

Let the new equation formed will be in y. Then y= x — h or x =y + h is the functional relation between
the roots of two equations.

By putting the value of x in (i), we get

fO+h)=a,(y+h)"+a,(y+h)"" +a,(y+h) +...+a, (y+h)+a, =0

By applying binomial theorem and arranging the terms in the descending power of y, we get

n(n

a,y" +(nash+a,)y"" +{2—'_1)az0h2 +(n —l)alh+a2}y"2 +...

+(ah" +ah"" +..+a, h+a,)
Now to remove any particular term we equate the coefficient of that term to zero and the values of h thus
obtained will be the required numbers by which the roots are to be diminished to get the required

transformed equation.

n—1

. a
Note: (i) To remove the second term: na,h+a, or h=——-
na,

n(n-1)
2!

(i1) To remove the third term: a,h’ +(n—-ah+a,=0

(i1i1)) To remove the fourth term, solve a cubic in h. To remove the last term, solve the equation f(4)=0.
3.6.5 Transformation of Cubic
We will reduce the cubic a,x’ +3a,x* +3a,x +a, = 0to the form in which second term is missing and the

coefficient of the leading term is unity, all other coefficients being integers. And we will find the
relation between the roots of the transformed equation and the given equation.

Consider an equation f(x) = a,x’ +3a,x” +3a,x+a, =0.....(i)

Suppose the transformed equation is in y. Then y =x —h or y=x+h

Let us diminish the roots of (i) by h by puttingx =y +h

fy+hy=a,(y+h) +3a,(y+h)’ +3a,(y+h)+a, =0
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Now, arranging the term in descending power of y, we get
a,y’ +3(ah+a)y* +3(ah’ +2a,h+a,)y +(a,h’ +3ah’ +3a,h+a,) =0
Let us write this equation as

A,y +34y +34,y+ 4, =0 ...(ii) [ 4, =a,]
For removing the second term, take a,h+a, =0 or h = 4

a,

2
W@hmmz%=an+2%h+a2=%(—£{]+2%(—ﬂ9+a2 {vh:(—ﬁﬂ}
ay ay a4y
2
_dman H Where H=a,a, —a,’
a, a,

3 2
Also, 4, =ayh’ +3a,h” +3a,h+ay = a, {_ﬂ] +3a, (—ﬂ] +3a, (—ﬂ] +a,
a,

2 3
a,"a, —3a,a,a, +2a G 2
— 0 3 0 21 2 1 — _2’ Where G:ao a3 — 3a0a1a2 + 2a13

a, a,
Now putting this value in (i), we get
s 3H G
a,y’+—y+—=0
a, a,

To make the coefficients of the leading term as unity, we divide this equation by a,

; 3H G
=>ay +—y+—7=0
a, 0

Multiplying roots by a,, we get Z *+3HZ +G =0 where Z=ay

This is the required transformed equation. If o, # and 7 be the roots of this transformed equation. Then

Z:aoy =d, (x —h) [ Z:aoy and y= (x—h)]
:%(X+ﬁ9=aﬁ+a] [yhz_ﬁL
ay a,
=a =aa+a; B =a,B+a;y =a,y+a,, where a, B and y are the roots of equation (i).
3
From (i), we have sum of the roots = a+ S+ = 24
a
' a, a+pB+y) a,
La=ala+— |=a,| 0 —————— =—(2a—,8—7/)
ay 3 3

. a . a
- B :?O(Zﬂ—a—y) and y :?0(27—ﬁ—a).
3.6.6 Transformation of Biquardatic

We will reduce the cubic ayx*+4a,x’ +6a,x* +4a,x+a, =0to the form in which second term is

missing and the coefficient of the leading term is unity, all other coefficients being integers. And we will
find the relation between the roots of the transformed equation and the given equation.

Consider an equation f(x) = a,x* +4a,x’ + 6a,x* +4a,x+a, =0.....(I)
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Suppose the transformed equationisiny. Theny=x-horx=y+h
Let us diminish the roots of (i) by h by puttingx =y +h

fOy+h)y=a,(y+h)*+4a,(y+h) +6a,(y+h)’ +da,(y+h)+a, =0

Now, arranging the term in descending power of y, we get

a, vt +4(ah+a)y’ +6(ah’ +2a,h+a,)y’ +4a,h’ +3ah’ +3a,h+ay)y
+(a,h* +4a,h’ +6a,h* +4ah+a,)=0

Let us write this equation as

Ay +44) +64,)° +44,y+ 4, =0 ...(ii) [ 4, =a,]
For removing the second term, take a,i+a, or h= s
a,
2
We have A4, =a,h’ +2ah+a, =a, 4 +2a, 4 +a, |“h= 4
dy 4 4
2

- H

= DD "N 2 Where H=a,a, - a,
4 dy
3 2
3 2 4, 4, 4
Also, 4, =ayh’ +3a,h” +3a,h+a,=a,| — | +3a,| — | +3a,| — |+a,
4 4 dy
2 3

-3 +2 G

=% aozlaz 4 =—, where G=q,’a, —3a,a,a, +2a’
4 4
4 3 2

o B 3 2 _ a, G a, a,

and A,=a h"+4ah’+6a,h"+4a,h+a,=a | -— | +4a,| -— | +6a,| -— | +4a,| -— |+a,
a'0 aO aO aO
_ a,’a, —4a,’a,a, +6a,a’a, —3a*
a,’
_ a, (aya, —4a,a, +3a,") —3(a,a, —a’)’ _ a,J-3H?
a,’ a,’

where I =a,a, —4a,a, +3a,’
Now putting these values in (ii), we get

6H G I-3H?
a0y4+—y2+4—2y+a0 —=0
a 4 ay
H [-3H?
=y +6—2y2+4£3y+%:0
a a a

Multiplying roots by a,, we get Z* + 6HZ? + 4GZ +(a,J-3H*) = 0 where Z=a,y

This is the required transformed equation. If «, 3, y and & be the roots of this transformed equation.

Then Z=a,y = a,(x—h) ["Z=a,yand y =(x—h)]
=a, (x+ﬂJ:a0x+al ['.'h:—ﬂ
a, a,
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=a =aa+a;f =a,B+a;y =ay+aand § =a,6+a,, where a,f,yandSare the roots of
equation (i).
- 4
From (i), we have sum of the roots= ¢+ f+y+0 = _T4
ay
cd=a| arl :ao[a_wj:@@a_ﬂ_y_g)
a, 4 4

B =a7i’(3ﬂ—a—7/—5) 7 =a7i’(37/—ﬂ—a—5)and5' =%(35—ﬂ—a—y).
3.6.7 Removal of Second and Third Term

Consider an equation f(x) = a,x’ +3a,x* +3a,x +a, =0......(i)

Suppose the transformed equationisiny. Theny=x-horx=y+h

Let us diminish the roots of (i) by h by puttingx =y +h

f(y+h) =a,(y+h) +3a,(y+h) +3a,(y+h)+a, =0

Now, arranging the term in descending power of y, we get

a,y’ +3(ah+a)y* +3(a,h’ +2a,h+a,)y +(a,h’ +3ah’ +3a,h+a,) =0

The second and third terms will be removed simultaneously if a/h+a, =0 or h= ~4 and
a,
a,h’ +2ah+a,=0
Putting the value of h in (i1), we get
2 2

2
ao(—ﬂ) +2aq, (—ﬂ]+a2 =0:>a#—2a#+a2 =0

aO aO aO aO
2 —_—
=a,a,—a,” =0
= H=0 is the required condition.

Example 1: Diminish the roots of 2x° —x” +10x—-8 =0by 5.

Solution. The given equation is 2x° —x° +10x—-8=0
In order to diminish the roots by 5 we have to divide the given equation successively by (x-5)
Thus h (the multiplier) = 5.
By successive application of synthetic division, we have
5 2 0 -1 0 10 -18

.. 10 50 245 1225 6175
2 10 49 245 1235 | 6167
. 10 100 745 4950
2 20 149 990 | 6185
. 10 150 1495
2 30 299 | 2485

10 200
2 40 499
10
2 50

2
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Check Your Progress

1. Diminish the roots of equation x* —5x’ +7x* —17x+11=0, by 4.
3.6.8 Transformation in General

Consider an equation f(x)=0
and let a,,q,,....,a,be its roots.

We will find out an equation whose roots are ¢(«,),d(c,),.....¢(cr,) where @(x) is an algebraic

function of x. Let us suppose that the new equation formed will be in y. Then the functional relation
between the roots of the two equation is

y=¢(x) (i1)
Now, we eliminate x from (i) and (ii) and get an equation F(y) = 0 which is the required transformed
equation.

Example 2: Find the equation whose roots are the squares of the roots of x° +¢gx+7r=0.
Solution. The given equation is x° +gx+7 =0 (1)
Let its roots be a, 5,7

It is required to find out an equation whose roots are >, 3, 7.

If the new equation is in y, then y=x’ (2)

Eliminating x between (1) and (2), we get
xy+xqg+r=0

or x(y+q)=-r [Transposing]
or X’ (y+q)’=r’ [Squaring]

or y(y+q)*=r’ [vx*=y]

or y(y'+q’ +2yq)=r’

or V' +2yq+q’y-r’ =0

Which is the required equation.

Example 3: If o, 8,7 are the roots of the equation x’ + px’ +gx +r = 0; form an equation whose roots

are Ot—i,ﬁ—i,}/—L .
yo - af

Solution. Since «, S,y are the roots of the equation

YApFgx+r=0, (1)
a+pf+y=-p (2)
af+py+ya=q L (3)
affyy=-r 4)

If the transformed equation is in y, then

y=05—L=05—L=05—i [From (4)]

By afy -r
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—a+& x4+ [+ a isaroot of (1) ]
r r
- e 2
r r+1

Putting this value of x in (1), we get

3.3 2.2

ry rly ry
+p. +q——+

a0 Doy T

or 7”2)/3+prjy2(r+1)+qy(r-|—1)2+(r+1)3 =0

or v+ pr(r+ 1)y’ +q(r+1)’y+(r+1° =0
Which is the required transformed equation.
Example 4: Form an equation whose roots shall be the squares of the roots of the equation
X +3x*+6x+1=0.
Solution: The given equation is x° +3x° +6x+1=0 (i)
Let the new equation be in y. Then y = x° (i1)
From (i) and (i), xy+3y+6x+1=0
wox(y+6)=(01+3y)
By squaring both sides, we get
X (y+6) =(1+3y) = p(»* +36+12y)=(9y* +1+6Y)
3’ +3y” +30y—1=0, which is the required equation.
3.6.9 Equation of Squared Difference of a Cubic

Equation whose roots are the squares of the differences of the roots of the equation x’+qx-+r=0

Consider the cubic equation x’+qx+r=0 (1)

Let a, 8,y are the roots of the equation

X Hgx+r=0; (1)
a+p+y=0 (2)
of+pPy+yx=q L 3)
affy=—r 4)

We have to find an equation whose roots are (a2 —f)*,(f-7)",(y —a)’
If the transformed equation is in y, then
y=(a-p) =(a+p) -4aop
“[(a+B+p)—af 421
v
—[0—aP —41 [ a+B+y=0;afy =—r]
a

=y=x +ﬂ [ o is a root of (i)]
X
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=X —xy+4r=0 ...((11)

Subtracting (ii) from (i), we get

X(q+y)-3r=0= x=—" ....(iii)
q+y

Putting this value of x in (i), we get

3
( 3r j _( 3r jy+4’”:0
q+ty q+ty

=27 +3qr(g+y) +r(g+y) =0

= (q+y) +3q(g+y) +27r* =0

=V’ +6qy° +9¢°y+(4q° +27r°)=0

which is the required equation.

Equation whose Roots are Squares of the Differences of the Roots of the Cubic

a,x* +3a,x* +3a,x+a, =0.

Consider the cubic equation a,x’ +3a,x’ +3a,x+a, =0 .. (1)

and let x,,X, and x, be the roots of this equation.

We have to find an equation whose roots are (x,-x,)’, (x, —x,)” and (x; — x,)’

By putting y=a,x +a,, H=a a, - a’ and G=a02013 —-3a,a,a, + 2a,” equation (i) reduces to
¥’ + 3Hy+G=0 ... (ii)

Let the roots of (i1) be «, f and y .

a=agx, ta; P=agx, ta; Y =ayx; +a

= a_ﬂ:ao(xl _x2)

= pB-r=a,(x,-x)
> y-a=a,(x—x)

Let the new equation be in Z. Then Z = (a — ) = (a + B)’ — 4af3

, 4 , 4 .
Sl o) 7F =2 =+ 2 By ). s fry=0and afy=G]

=y’ +£ =y’ +£ [y is aroot of (i1)]
=y -Zy+4G=0 (iif)
Subtracting (iii) from (ii), we get
3G
3H+Z)y -3G=0 = y=
( )y Y307
3
Putting this value of y in (ii), 36 +3H 3G +G=0
3H+Z 3H+Z

= (BH+Z)’ +9H(3H+Z)* +27G* =0



72 Equation and Polynomial
= Z’+18HZ* +81H*Z+27(G*+4H* -0 . (iv)
The roots of this equation are (o — £)°, (8 —7)* and (y — )’

ie a,(x,-x,),a, (x,—x) and a,’ (x, — x,)°

1

o 1
If the new equation is in t, then t = (x,-x,)’ = —Zao2 (x,-x,) = —Z
a

0 a
= 7Z=a,’t
By putting this value of Z in (iv), we get
a,’t’+18a, Ht* +81a,"H*t+27(G* +4H’)=0
Which is the required equation.
Example 5: Find the equation of squared difference of the roots of the equation x* —7x+6=0.

Solution: The given equation x* —7x+6=0 . ()
Let «, B, y be the roots of the equation

a+p+y=0

affy =—6

Now we have to form an equation whose roots are (a — £),(8—7)",(y — )’

If the new equation is in y, then y = (8- y)’
or y=(B+a) —4py

3
=(0-a) —4(—3) et
a a a
> +24
or T [Replacing « by x]
X

or xy=x +24
or X —xy+24=0 ....(11)
To eliminate x between (i) and (i1), subtracting (ii) from (i), we have

—Tx+xy—-18=0

18
or x(y-7)=18= x=——
y—=1

Putting this value of x in (1), we have
3

) e
or 5832-7(18)(y=7) +6(y-7) =0
or 5832-126[y* =14y +49]+6[y’ —343-21y" +147y]=0
or 5832126y +1764y — 6174+ 6y —2058 —126)" + 882y =0
or 6y’ —252y° +2646y —2400 =0
or Yy —42y” +441y-400=0.
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[\S}

3
4
5
6

. Show that the equation + + + e +

3.7 SUMMARY
If f(x) and g(x) are two nonzero polynomial, then there exist unique polynomial ¢(x) and r(x)
such that f(x)=¢(x).g(x)+r(x), where r(x)is either a zero polynomial or degree of
r(x)< degree ofg(x). Where ¢(x)is called quotient and r(x)is called remainder when f(x) is
divided by g(x).
If a polynomial f(x) is divided by x-a, then the remainder is equal to f(a).
If h is a root of the equation f(x)=0, then (x-h) is a factor of f(x) and conversely.
To transform an equation into another whose root shall be equal in magnitude but opposite in sign,
change signs of coefficients of the terms with odd powers of x in the given equation.
In order to form an equation whose roots are m times the roots of the given equation, multiply the

successive coefficients beginning with the coefficient of x"'by m, m*, m’...., m" .respectively. If

any power of x is missing it should be regarded as supplied with a zero coefficient.

We transform an equation f(x)=ax" +ax"" +a,x"” +...+a, x+a, =0 in to another equation
whose roots will be the roots of the given equation diminished by h. Then the transformed equation

is Agx" +A X" +A X" +..+A _x+A, =0,where A,=qa,, A ,A ..., A are constants.
3.8 KEY TERMS

Real Polynomial: A polynomial f(x)=a,x"+ax"" +..+a,is said to be real polynomial If all the
coefficients a,,q,,...,a, in f(x) are real.

Zero Polynomial: If all the coefficients q,,a,,...,a, in f(x) are zero then polynomial is said to be

zero polynomial.

Complete and Incomplete equation:A General Equation of degree n is said to be complete if it
contains all power of the variable x from 0 to n. For example a,x’ +ax’ —a,x+a, =0is complete
equation of third degree.

Root of an Equation:The value of x for which f(x) vanishes is called root of equation f(x) =0 .For
example if f(h) =0, then h is called root of the equation f(x)=0.

3.9. QUESTIONS AND EXERCISES

. Given that -6 is a root of equation x* +2x> —17x+42 =0, solve it.
. From an equation with rational coefficients two of whose roots are 1+ 5i and 5-i.

A° B? C? H*?

= K has all real roots.
x—a x-b x-c x—h

. Find an equation of the lowest degree with real coefficients which has 1+2i and 3-I as two of its roots.

. Solve the equation x* +4x’ + 6x° +4x +5 = 0 given that one root is i.
.If a, B,y are the roots of the equation (a — x)(b—x)(c — x)+1=0, then prove that a,b,c are the roots of

the equation (x—a)(x— ) (x—y)+1=0.

7. Solve the equation 4x” —4x* —15x+18 = 0, two of its roots being equal.

8. Solve the equation 3x* —40x’ +130x> —120x + 27 = 0 given that the product of two roots is equal to
the product of the other two roots.

9. Solve the equation x* +x° —16x* —4x +48 = 0, having given that the product of two of the roots is 6.
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10. Find the condition that the roots of the equationx’ + px’ +gx +r =0 should have two roots «,f,

connected by the relation ¢ff +1=0.
2 3

11. Prove that for two roots of the cubic x’ + ax + b = 0to be equal, the condition is y + o7 =0

12.If a,f,y,0 are the roots of the biquadratic x*+ p)c3 + qx2 +rx+ s =0, find the condition that the root
should be connected by the relation f+y=a+dand hence solve the equation
x*=8x +21x° —=20x+5=0 .

13. Without solving the equation x’ — x* —2x + 2 = 0, prove that it has no multiple roots.

14. Solve the equation x* —15x° +10x> + 60x — 72 = 0, by testing for equal roots.

15. Solve the equation40x* —22x° —21x* + 2x +1 =0, if the roots are given to be in H.P.

16. The difference between two roots of the equation 2x’ + x> —7x—6 = 0is 3. Solve it by diminishing
the roots by 3.

17. Remove the second term from the equation x* +4x’ +2x> —4x-2=0.

18. The difference of two roots of the equation x’ —13x” +15x+189 = 0is 2. Solve it by increasing the
roots by 2.

19. Transform the equation x* —4x’ —18x> —3x+2 =0 into one which is wanting in the third term.

20. If a,B,y are the roots of the cubic x’ +ax’ +bx+c=0find the equation whose roots are

a B 7
,B-I—y/’aﬂ/’a-l-ﬂ'
21. If the roots of equation x’—6x"+11x-6=0be a,f,7, find the equation whose roots are

ﬁ2+72,7/2+a2,0{2+ﬂ2.
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4.0 INTRODUCTION
Descarte’s rule of signs was first described by Rene Descartes. It is a method for determining the
number of positive or negative real roots of a polynomial. This rule gives us an upper bound number of
positive or negative roots of a polynomial. It is not a deterministic rule i.e., It does not tell the exact
number of positive or negative roots. , we are going to learn the solution of cubic and biquadratic
equations.
4.1 UNIT OBJECTIVES

After going through this unit, you will be able to:

> Find out the maximum number of positive and negative roots of a complete equation.

> Find out the maximum number of positive, negative and imaginary roots of an incomplete
equation.

> Solve cubic equation by Cardan’s Method.

> Solve biquadratic equation by Descarte’s and Ferrari’s method.

4.2 DESCARTE’S RULES OF SIGNS

Here we will discuss the definition of some concept related to Descate’s rule of sign.
Continuation or Permanence of sign
A continuation or permanence of sign is said to occur in a polynomial f(x), whose terms are arranged in

descending power of x, if the two successive terms have the same sign.

For example: In x” +x® —7x’ —9x* = 7x’ +4x* —11x +10, there are three continuation of sign occurring
at +x°, —9x*, —7x°.

For example: In x°—7x’ +11x* —5x’ —6x* —19x+11, there are four changes or variations of signs

occurring at —7x°, 11x*, =5x° and 11.
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Complete equation

An equation:

(1) The degree of the equation is equal to the sum of the number of continuation and variations of signs.
(i) A continuation of sign becomes a variation of sign, if x is changed into —x and vice a versa.
Ambiguity of Sign

When any term of a polynomial f(x) has the double sign £+, F, the ambiguity of sign is said to occur.
Rule 1: The number of changes of signs of the coefficients in f(x) always exceed the number of
positive roots in any polynomial equation f(x) =0 with real coefficients.

Rule 2: The number of changes of signs of the coefficients in f(—x) always exceed the number of
negative roots in any polynomial equation f(x)= 0 with real coefficients.

Proof: Let the sign of terms in a polynomial f(x)be

+ + - - - + - + -

There are five changes of signs in the given polynomial. On multiplying the given polynomial by a
binomial x-h (h > 0) in which the signs are + -, we get

+ + - - - + - + -
+ -
+ + - - - + - + -
- - + + + - + - +
+ + - i ¥ + - + - + (1)

We have three ambiguous signs in the resulting polynomial which replace each continuation of sign in
the original polynomial.

Now, consider the most unfavorable case in which continuation replace each ambiguity.
It can be seen that the resulting series of signs is same as the original with an additional change of sign
at end.

Now, if we take the lower signs of equation (i), we get
+ - - + + + - + - +
Thus, we can see that in both cases there are six changes of signs which is at least one more than the
number of changes of signs in the original polynomial.

Hence on multiplying a polynomial by a factor of the form x-h (h > 0), at least one additional
change of signs will always introduced.

Now, let an nth degree equation f(x)=0has p positive roots (p < n) say, #A,h,,......,h, and
remaining roots are negative, zero or imaginary.

Then, f(x)=(x—=h)(x=h,)......(x=h,)@(x), where ¢(x)is of (n - p)th degree.

The expression ¢(x)may or may not have any change of sign, but when it is multiplied by
(x=h)(x=hy)......(x = h,) then at least p new changes of signs introduce in the product so that f(x) will

have at least p changes of signs.
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Hence, the number of changes of signs in f(x) always exceeds the number of positive roots of

f(x)=0.
Again the number of negative roots of f(x) =0 are the positive roots of f(—x)=0and therefore

the number of changes of signs in f(—x) always exceed the number of negative roots of f(x) =0.

4.3 SOLUTION OF CUBIC AND BIQUARDATIC EQUATION

4.3.1 Cubic Equation
Cubic equation is an equation of third degree. The most general form of a cubic equation is

. . . a . . .
x’ +ax’ + bx+c =0and by increasing each root of the cubic by 3 it can be transformed into simpler

formx’ + px+¢q=0.
4.3.2 Cardan’s method of solving a cubic equation

Let the general cubic equation be a,x* +3a,x*> +3a,x +a, =0 (1)

After removing the second term and multiplying the roots by a,, equation (i) reduces to Z’+3HZ+G=0

— — 2 —n 2 3
Where Z=a,x +a,, H=a,a, —a,” and G=a,"a, —3a,4a,a, + 2aq,
Let Z=u+v
By cubing, we get

Z=w+v)y =272 = +3uwu+v)+v' =u’ +3uvZ +v°

... (ii1)
=77 =3uvZ — (1’ +V°)
Comparing the coefficient of like terms in equations (ii) and (iii), we get
SBuv=3H=uv=-H=uVv' =-H’ and v’ +V' = -G
Quadratic equation having roots u’, v’is t*-(u’+v’ )t+u’v’ =0
= t*+Gt-H’ =0 oo (iV)
_GaG e
2
. GHGEar ., —G-Ja e
Suppose u’= and v’ =

2 2
2 2 . 2
From above we get three values of u and v as u, uw, u®” and v, vo, voo~ respectively, where ®, ®° are

the imaginary cube roots of unity.
We get the values of Z=u+v by choosing, the values of u and v such that their product uv= -H is real.

Thus, we have u+tv, uo+ve’, um’ +ve as the three values of Z and we can get the corresponding values

of x from the relation Z=a x + q,.

Nature of the Roots of the Cubic equation Z° +3HZ+G =0
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-GG’ +4H’ vt =~ 8 ~G* +4H’
2 2

nd v

and hence the three

. 3
From the above section, we have u’=

values of u and v are u, uo, u®’ and v, vo, vo’ respectively, where o, o’ are the imaginary cube roots
of unity.

We obtain the values of Z = u+ v, by choosing the values of u and v such that their product uv=-H is
real.

Let a, B, y be the roots of equation (ii), then

a=utv
B=untve’ =u L -1+i«/§] + v{ﬂJ = —l(u+v) +i ﬁ (u-v)
2 2 2 2
and y=uo’+vo=u L _l_i\/gJ + v{ I l\/gj = —l(u+v) - iﬁ(u-v)
2 2 2 2

Now four cases arise:
Case I: If G* +4H’ is positive, G* +4H> > 0, then the roots of equation (iv) are real
= u’ and v’ are both real or u and v are both real.
= « isreal while B and y are conjugate complex numbers.
Case II: If G* +4H’ is negative, i.e. G> +4H’ <0, then the roots of equation (iv) are conjugate
complex.
= u’ and v’ are conjugate complex numbers.
= u and v are conjugate complex numbers.
~.(u+v)isreal and (u - v) is purely imaginary.
= a , P and y are real roots
Case III: If G* +4H’ is zero, i.e. G* +4H’ =0, then the roots of equation (iv) are equal
LU=V u=v
.. All the roots are real while B and y are equal roots.
Case IV: If G =H= 0, then equation (ii) becomes Z° =0=>a ==y
Hence, all the roots are equal.
The irreducible case of Cardan’s method
If G* +4H’ is negative, i.e. G’ +4H’ <0 , then the roots of equation t’+Gt-H’ = Qare conjugate
complex.
= u’ and v’ are conjugate complex numbers.
= uand v are conjugate complex numbers.
In this case, we use De-Moivre’s theorem to find the cube roots of complex numbers.

Let u’ = a+ib and v’ = a-ib By putting a=rcos0 and b=rsin0 so that r = va’+b? and 6=tan" (éj
a

we get, U’ = r(cos @ +isin @) = r{cos(0+2nm)+isin(0+2nm)]
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1 1
= u = r*[cos(0+2nm)+isin(6+2nm)]?

L + +
=r? {cos(e inn}risin(e innﬂ,where n=0, 1, 2

1
Similarly, v=r3 [cos ( 6+§nn ] -isin ( 6+§nn ﬂ ,where n=0, 1, 2

! + + L + + . +
o Z=utv=r? {cos(e inn)+isin(e imﬂ+r3 {cos(e innj—isin(e innﬂ =2r3cos(e innjwhere n=0, 1,2

Hence, the three values of Z are

1 1 " ! "
2r3cos (gj ,2r°cos [6%) ,2r°cos [6#), where r =+a’+b* and 6=tan™ (éj )

a

Example: Solve the equation 28x* —9x* +1=0 by Cardan’s method.
Solution: The given equation is 28x” —9x” +1=0 ..(0)
Here the third term is missing. First of all we transform it into an equation in which the second term

1
from the beginning is missing. This can be done by substituting x=—1in (i).
y

1
Putting x=—1n (i), we get
y

B0 12025 -9y +28=0 (i)
y 'y

Let y=u+tv
Y =(utvy

or vy =u’+v’ +3uv(utv)=u’ +v’ +3uvy

y3 _ 3uv'y — (u3 +V3) = 0 ...(111)

Comparing the coefficients of like terms in (i1) and (iii), we get
w=3 = (w)’ =3) =>u’v’'=27
and uw v =-28
Thus u’and v’ are the roots of the equation
t? -+ )’y =0
ie. 2 -28t+27=0 ie., (t+1)(t+27)=0= t=-1or-27
Let u’ =-land v’ =-3
One real value of u is -1 and one real value of v is -3

.. One real value of y=u+tv is -4

|
1.e., One real value of x =— is —l

y

Thus —% is a root of equation (i). By synthetic division, we have
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—— 28 -9 0 1

-7 4 -1
28 -16 4 0
.. Depressed equation of (i) is 28x”> —16x+4 =0

or Tx> —4x+1=0

L_AeN16-28 4xy-12 4+2V3i 24430

14 14 14 7

Hence the roots are —l, 2+ \/gi .

4 7
Example: Solve the equation x* +3x —14 = 0 by Cardan’s method.
Solution: The given equation x’ +3x—14=0 ..(1)
Let X=u+tv

¥’ =(utv)’

or X =u’+v’ +3uv(utv)=u’ +v’ +3uvx
ie. ¥ =3uvx —(0’+v')=0 ...(iii)

Comparing the coefficients of like terms in (i1) and (iii), we get
w=-1 = ) =(-1)=u'v'=1
and v+ =14
Thus u’and v’ are the roots of the equation

t? -+ )’y =0
ie. t7-14t-1=0
1424196+4 _14£10:2 141042 I

2 2 2

Let u’ =7+5v/2andv’ =7-52
. uand v are of the form p =+ qﬁ
Let o' =7+5/2=(p+qv2)’ and V' =7-5V2 =(p-qv2)
Then 7452 = P’ +2q3x/§+6pq2 —3p2q\/§
and 752 = P’ —2q3x/§+6pq2 —3p2q\/§
Adding and subtracting, we have

7=p’+6pq’ =p(p’+6q°) (i)
and 5=2¢ +3p’q=q(3p’ +24¢°) ..(iv)

From (ii1) and (iv), it is clear that p is a factor of 7 and q is a factor of 5. By inspection we find that
p=1, g=1 satisfy (iii) and (iv).
u :p+q\/§=1+\/§ and u :p—qﬁ=1—ﬁ are real cube roots of u’ and

v satisfying uv = -1

One root of (i) is given by x =u+v =2
By synthetic division, we have

Solving for t, we get ¢ =
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2 1 0 3 -14

| 1 2 7 0

. Depressed equation of (i) is x* +2x+7 =0

x=—_2i 4-28 =-1+iJ6
2
Hence roots are -2, —1 & i\/g .
Check Your Progress
1. Solve the equation x’ —12x —65 = 0 by cardan’s method.

547
Ans 5’—5_13\@

4.4.1 Descarte’s Solution of the Biquardatic Equation.

Here we are going to find the roots of two different types of biquadratic equation using Descarte’s
method.

Descarte’s method for solving the Biquadratic equation

X' g +rx+s=0
The given biquadratic equation is x* +¢gx* +rx+s=0 .. (1)
Let the equation (i) can be split up two quadratic factors

X +lx+mand x> —Ix+n

Sxt gt s = (0 H I+ m)(x’ —Ix+n) ... (ii)
By comparing the coefficients of like terms in equation (i1),, we get

min-I’=g=>n+m=10"+q ... (1i1)
ln—lm:r:>n—m=§ ... (1v)
and mn=s e (V)

By using, the identity (n+ m)* —(n —m)’ = 4mn we eliminate m and n.

From equation (iii), (iv) and (v), we get
2 2
(> +q)° —;—2:4s:>(l4 +212q+q2)—’l”—2=4s
= (I°+28q+ g ) =1 =4ls = 1 +20'q + ' (q" =4s) =17 =0
Which is cubic equation in /*. By trial method, /*and thus /can be determined and then the values of

m and n can be found from equation (iii) and (iv).

Hence, L.H.S of the equation (i) reduces to two quadratic factors x* +/x+mand x* —/x+n. When
these factors are equated to zero, we obtain four values of x, these four values of x are the roots of the
given biquadratic equation.

Descarte’s method for solving the biquadratic equation
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a,x* +4a,x’ +6a,x’ +4ax+a, =0
Let the biquadratic equation be a,x* +4a,x’ + 6a,x* +4a,x +a, =0 .. (1)

To transform the given equation into another equation in which the second term is missing and the
coefficient of the leading term is unity, we put Z = a,x + a, in equation (1).

7' +6HZ? +4GZ+(a,’ 1-3H*) =0 ... (ii)
where, H=a,a, —a,°, G=a,’a, —3a,a,a, +2a,’ and I=aa, —4a,a, +3a,’

Let equation (i) can be split up into two quadratic factors,

Z*+pZ+qand Z* - pZ+q

L ZY+6HZ? +4GZ +(a, 1-3H?) = (2 + pZ +q)(Z° - pZ +q) ... (iii)

Compairing the coefficients of like terms in equation (iii), we get

g+q —p°=6H=q+q =p° +6H .. (Iv)
, , 4G

rq —pq=4G:>q—q=7 e (V)

and gqq =a,1-3H" ..(vi)

By using the identity (¢ +¢ )’ —(¢—¢q )* = 4gq we eliminate q and ¢ . From (iv), (v) and (vi), we get

2
(p>+6H) [ﬁj = 4(a,*1-3H%)
p

4 2 2 16G2 2 2
= (p* +12p°H +36H) - = 4(a, 1 -3H?)
P

— =
= p’ +12p*H +36p’H* —16G* =4p*(a,’ -3H?)

= p*+12p*H+4p*(12H? —a,’ 1) -16G* =0

which is a cubic equation in p”. Solving it by trial method, p’and p can be determined.

And then ¢ and ¢ can be found from equation (iv) and (v).

Thus, L.H.S of the equation (iii) reduces to product of two quadratic factors. When these factors are
equated to zero, we get four values of Z, which are the roots of the equation (ii) from the relation

Z = ayx + a,, four values of x can be obtained.

Note: The identity

Z'+6HZ? +4GZ + (a)’ 1) -3H*)=(Z* + pZ +q)\Z* - pZ +q)

is called Descarte’s Resolvant.

Example: Apply Descarte’s method to solve the equation x* —10x” +35x> =50x+24=0.

Solution: The given equation is x* —10x’ +35x* —50x+24 =0 (i)
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o a
To remove the second term, we diminish the roots by h where &/ = ———= " =
na,

and then multiplying the roots of (i) by 2, we get

p*—10.2x° +352°x° —=502°x+24.2* =0

= y* —20x’ +140x” —400x +384 =0 ..(1i1)
where y =2x

Now diminishing the roots of equation (ii) by 5 using synthetic division, we have

5 1 20 140  -400 384

5 =75 325 -375

1 -15 65 1509
5 -50 75

1 -10 15 0
5 -25

1 -5 -10

1 0

1

.. The transformed equation is Z* —10Z* +9=0 ... (1i1)

Z+5 (i)

where Z=y-5=2x-5=>x=

From equation (iii), we have
(2P -1(Z*-9)=0=Z =+1,43
1+5 -1+5 3+5 -3+5

Then from (iv), x = , , , 1e.3,2,4,1
2 2 2 2
Thus, the required roots are 1,2,3 and 44.
Check Your Progress
1. Apply Descarte’s method to solve the equation x* —3x” —42x-40=0.
Ans. —3i—z\/§’4 and -1.

4.4.2 Ferrari Method of Solving a Biquadratic Equation
We will solve the biquadratic equation a,x* +4a,x’ + 6a,x* +4a,x +a, = 0by splitting it into product

of two quadratic factors by Ferrari’s method. This is done by expressing the given biquadratic equation
as the difference of two perfect squares.

The given biquadratic equation is a,x* +4a,x’ +6a,x* +4a,x+a, =0  ..>i)
4 3 2
= ayx’ +4ax’ =—6a,x" —4a,x—a,

= a,’x" +4a,a,x’ =—6a,a,x’ —4a,a,x —a,a, [Multiplying both sides by q,]
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Now, to make L.H.S. a perfect square, we add 46112x2 on both sides
2_4 3 2.2 2.2 2
a,” x" +4a,a,x” +4a"x" =4a,x" —6a,a,x” —4a,a,x —a,a,
= (a0x2 +2a,x)" =4a’x" - 6a()012x2 —4da,a,x —a,a, ... (ii)
The above equation can be written as
(a,x* +2a,x+A)’ =4a’x’ —6a,a,x* —4a,a,x — a,a, +2(a,x* +2a,x)A+A*, where A is an arbitrary
constant.
= (a,x° +2a,x+ 1) = (4a’ —6aya, +2a,A)x* + Ha, A —aa,)x+(A* —aya,)  ....(iii)
We choose Ain such a way that R.H.S. becomes a perfect square of a linear expression in x. This is
possible if and only if its discriminant is zero.

o [MaAd—aya)) —44a’ —6a,a, +2a,A) (A7 —aya,) =0

v < A =3a,4° + (4a,a, —a,a,) A + Ba,a,a, —2a°a, —2a,a,°) =0
which is a cubic in A and is called Resolvent Cubic. Find the value of A which satisfies this cubic.
Suppose the R.H.S of equation (iii) is a perfect square of linear expression px+q.

Thus, equation (ii1) becomes,
(a,x* +2ax+A) =(px+q)’
= (a,x* +2ax+2) —(px+q)° =0
= [(aox2 +2a,x+A)—(px+ q)][(aox2 +2a,x+A)+ (px+ q)] =0
= [aox2 +2a, - p)x+(A- q)][a0x2 +2a, + p)x+(A+ q)] =0
Thus, the L.H.S. of equation (iii) is written as the product of two quadratic factors
[aox2 +(2a, — p)x+ (A - q)] and [aox2 +(2a, + p)x+ (A + q)] which when equated to zero gives four
values of x, which are the roots of the equation (i).

Note: (i) To make the coefficient of x*unity, we multiply the roots of given equation by a suitable
constant.
(i1)) We can obtain roots of resolvent cubic by inspection.

Example: Solve the equation 2x* + 6x> —3x” +2 = 0 by Ferrari’s method.
Solution: The given equation is 2x* +6x° —3x> +2=0 .. (i)
In equation (i), the coefficient of x*is 2. So to make the coefficient of x*unity, we multiply roots of
equation (i) by 2.

2°2y* +2'.6y° —2°3y" +2°2=0

=y +6y° -6)° +16=0 ... (i1)

=1 +6)’ =6y’ -16=y* +6y° +9)y° =9)° +6)° —16

=y’ +3y)° =15)y"-16 .... (iii)

2 2 2 2 2 2
Now, [ (7 +3p)+ A = (" +3p)’ +2(y° +3p)A+ 1

=15y* =16 +2(y* +3y)A+ A’ [Using (iii)]
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=(15+24)y* +6yi+(A° -16) ..(1v)
We choose A in such a way that R.H.S. of (iv) is a perfect square. This is possible if and only if
discriminant of R.H.S. =0

(64)* —4(15+24)(1* —16) =0
942 —(15+24) (A7 =16)=0= 2* +327 =161 -120 =0

By inspection, A =5is a root of above equation.

By putting A =5, equation (iv) becomes
2 2 2 2 2 2
[y +3y+5] =25y +30y+9:>(y +3y+5) =(5y+3)
:>(y2+3y+5)2—(5y+3)220
=[ (7 +3y+5)-(5y+3)|[ (" +3y+5)+(5y+3)]=0
=" =2y+2)(»* +8y+8)=0
2+V4-8 2%
2 2

R+ 4/ — Q4+
or y°+8y+8=0=y= 8% 264 32: 8_24\/52—4i2\/§

which are the roots of equation (ii).

- Either y* -2y+2=0=y= 1+i

n
Dividing each root by 2, root of given equation (1) are 1—;1 and —2+/2.

Check Your Progress

1. Solve x*+2x’ —7x” —8x+12 =0by Ferrari’s method.

Ans. -3,-2,1, 2.

4.5 SUMMARY

e A continuation or permanence of sign is said to occur in a polynomial f(x), whose terms are
arranged in descending power of X, if the two successive terms have the same sign.

e The number of negative roots of f(x)=0 are the positive roots of f(—x)=0 and therefore the
number of changes of signs in f'(x) always exceed the number of negative roots of f(x).

e  We will reduce the cubic a,x’ +3a,x* +3a,x +a, = 0to the form in which second term is missing and
the coefficient of the leading term is unity, all other coefficients being integers.

e We will reduce the cubic a,x*+4a,x’ +6a,x* +4a,x+a, =0to the form in which second term is

missing and the coefficient of the leading term is unity, all other coefficients being integers.
4.6 KEY TERMS

e Real Polynomial: A polynomial f(x)=a,x" +ax"" +..+a,is said to be real polynomial If all the
coefficients a,,q,,...,a, in f(x) are real.

e Zero Polynomial: If all the coefficients q,,q,,...,a, in f(x) are zero then polynomial is said to be

zero polynomial.
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e Complete and Incomplete equation: A General Equation of degree n is said to be complete if it
contains all power of the variable x from 0 to n. For example a,x’ +ax’ —a,x+a, =0is complete

equation of third degree.
If any of the powers of the variable are missing from an equation of degree n is called incomplete

equations. For example a,x’ +a,x* +a, =0 is incomplete equation of third degree.
¢ Root of an Equation: The value of x for which f(x) vanishes is called root of equation f(x)=0.
For example if f(h) =0, then h is called root of the equation f(x)=0.

e Continuation or Permanence of sign: A continuation or permanence of sign is said to occur in a
polynomial f(x), whose terms are arranged in descending power of x, if the two successive terms

have the same sign.
4.7 QUESTIONS AND EXERCISES

. Solve the equation 28x’ —9x” +1= 0by Cardan’s method.

N =

. Show that the roots of the cubic equation x’ —12x” +8 = Qare
400527”,40054—7[,400581

3. Solve the equation by expressing them as product of two quadratic factors

Q) x'—5x"-6x-5=0 (ii) x'—8x*—24x+7=0

4. Solve the given equation by Descarte’s method 2x* +6x° —3x* +2=0.
5. Solve the equation x* —15x” +20x — 6 = 0by the method of resolution into quadratic factors.
6. Solve the equation by using Ferrari’s method x* —10x’ +26x> —10x+1=0.
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